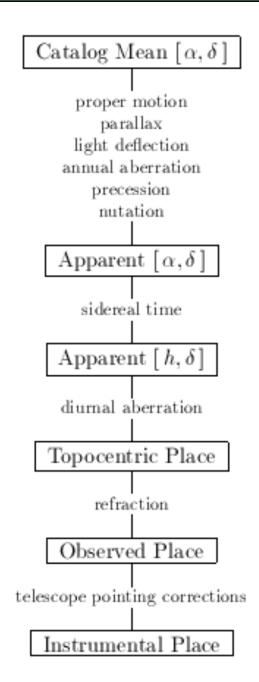
Small Antenna Calibration at JPL

Dayton Jones, K6DJ JPL/Caltech (retired) & Space Science Institute

- DSN Array Project: a brief tour
- Pointing models and coefficients
- Receiver temperature
- Aperture efficiency
- Receiver total power stability

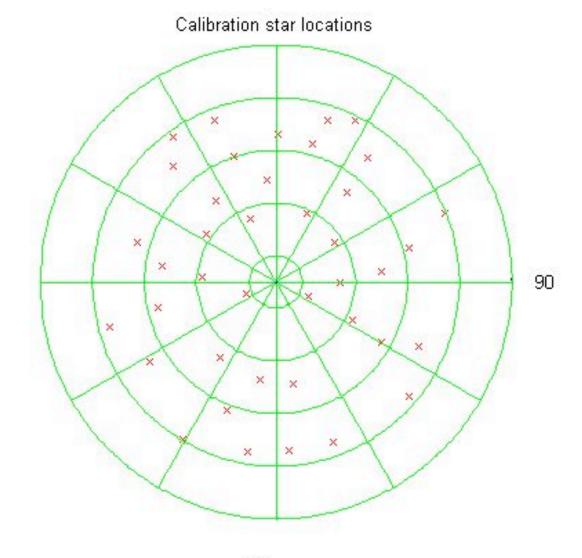


12-m telescope

6-m telescope

Telescope pointing steps

Most of these effects other than precession, refraction, and telescope-specific pointing corrections should be negligible for the DSES telescope at frequencies < 10 GHz.



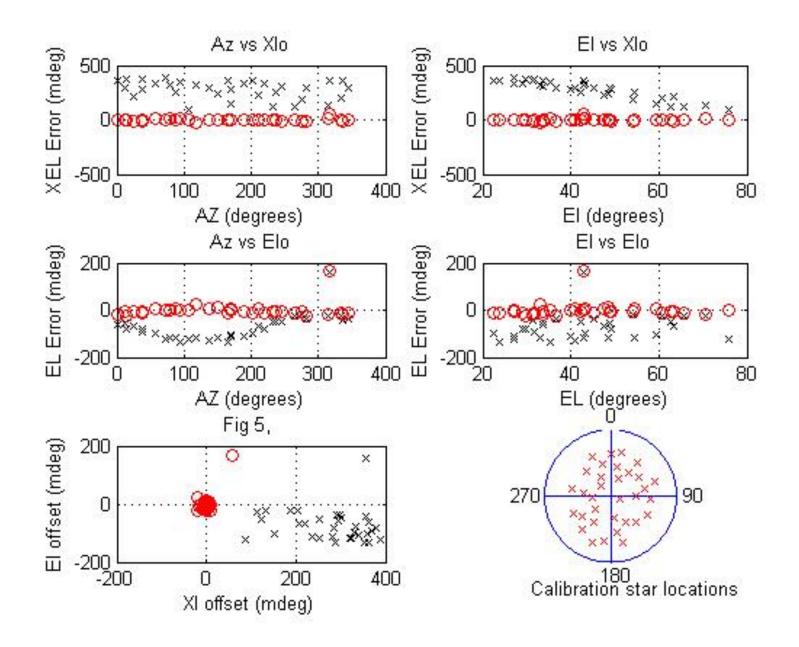
Two 6-m telescopes at JPL. Note tiny black optical telescope mounted at the lower edge of each dish.

Even a small optical telescope mounted on the radio telescope allows use of bright stars all over the visible sky.

270

11-term antenna pointing model

$$\begin{pmatrix} \delta xel \\ \delta el \end{pmatrix} = \begin{pmatrix} P1 \\ P2 \\ ... \\ P11 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \cos(el_t) & 0 \\ \sin(el_t) \cos(az_t) & -\sin(az_t) \\ \sin(el_t)\sin(az_t) & \cos(az_t) \\ 0 & \sin(el_t) \\ 0 & 1 \\ 0 & \cos(el_t) \\ 0 & \cot(el_t) \\ \sin(az_t)\cos(el_t) & 0 \\ \cos(az_t)\cos(el_t) & 0 \end{pmatrix}$$


 az_t is the true azimuth el_t is the true elevation

 $az_{a} = az_{t} + \arcsin(\sin(\delta x e l) / \cos(e l_{t}))$ $el_{a} = al_{t} + \delta e l$

Mechanical misalignment terms

- **P1**: Feed offset in cross-elevation (collimation error)
- P2: Azimuth encoder zero offset (after any large fixed azimuth offsets removed)
- P3: Axis skew (non-orthogonality)
- P4: Azimuth axis tilt in north-south direction
- P5: Azimuth axis tilt in east-west direction
- P6: Elevation encoder zero offset
- P7: Elevation axis flexure (sag) in plane perpendicular to elevation axis (gravity)
- **P8**: Elevation axis flexure in plane perpendicular to azimuth axis (mass asymmetry)
- P9: Residual refraction (probably negligible)
- P10: Azimuth encoder coupling alignment error in north-south direction
- P11: Azimuth encoder coupling alignment error in east-west direction

Could start by setting P6, P9, P10, and P11 to zero

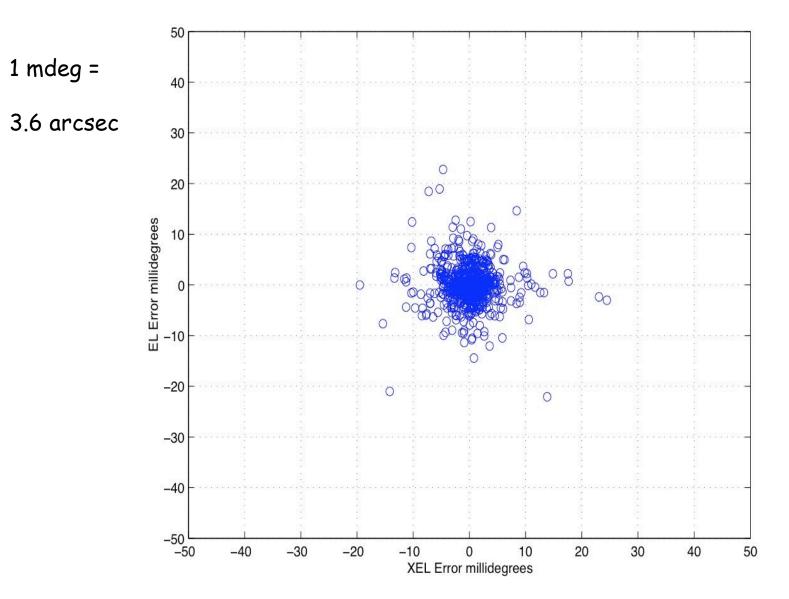


Figure 28. Measured pointing accuracy of 12-meter breadboard antenna

Receiver temperature

Hot and cold loads needed for absolute calibration.

- 1. LN₂ absorber + ambient temp absorber (best)
- 2. Ambient temp absorber + sky:

$$\frac{P_{vane}}{P_{sky}} = \frac{T_{receiver} + T_{vane}}{T_{receiver} + T_{spillover} + T_{sky}}$$

HOT-COLD noise power ratio gives receiver temperature:

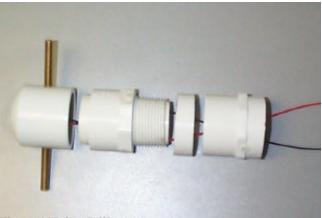
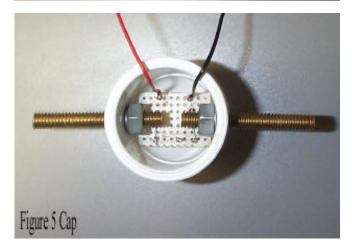
$$Y = \frac{N_{on}}{N_{off}} \qquad \qquad T = \frac{T_{source}^{ON} - Y \cdot T_{source}^{OFF}}{Y - 1}$$

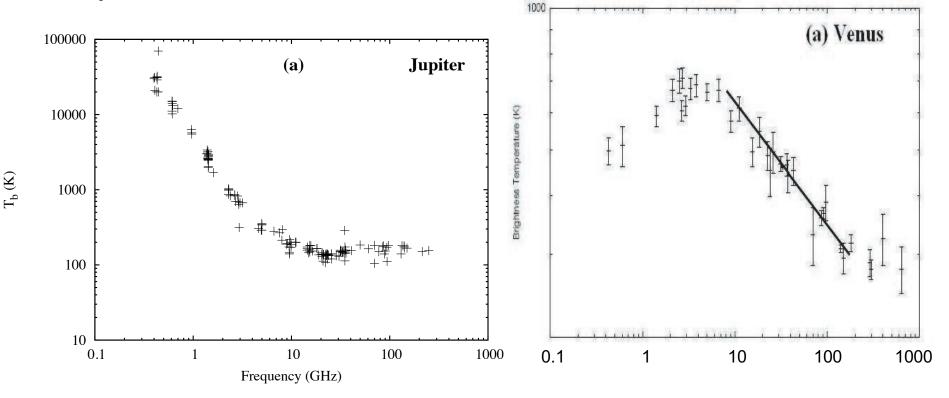
Receiver temperature

Hot and cold loads needed for absolute calibration.

Once T_{rcvr} is known, we can calibrate a noise diode for near-continuous monitoring of receiver temperature.

With fast switching, noise diode can also be used to correct for receiver gain fluctuations.


Figure 4 Noise Calibrator

Aperture Efficiency

Need calibrated noise source (hot/cold loads or lunar observations) so T_{ant} can be measured.

Need a radio source with known flux density S in Jy. Could use Cas A, Tau A, Cyg A, and possibly Jupiter or Venus near inferior conjunction.

Aperture Efficiency

For a uniformly bright disk (moon or planet) and a gaussian telescope beam, the measured antenna temperature is reduced by:

$$x^{-2}$$
 [1 – exp(- x^{2})], where x = sqrt(ln 2) [$\Phi_{DISK} / \Phi_{HPBW}$]

Calculate expected antenna temperature:

$$T_{ant} = A_{physical} S_{Jy} 10^{-26} / 2 k$$

Efficiency is just measured T_{ant} divided by predicted T_{ant}

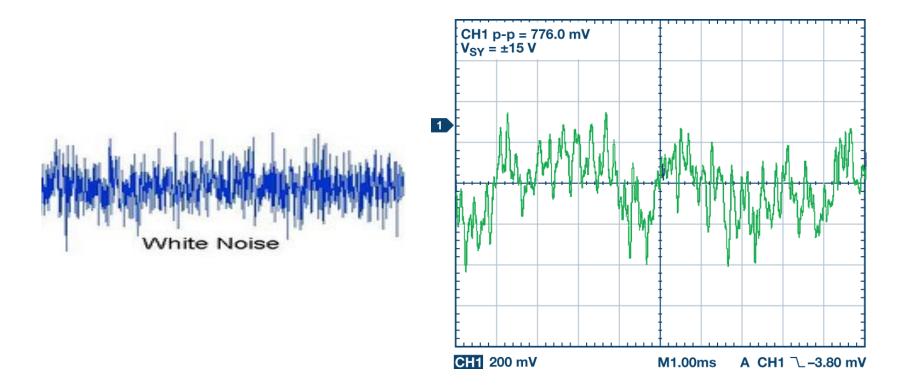

Frequency GHz	$\substack{S_{1965}\\Jy}$	$\substack{S_{2000}\\Jy}$	Secular decrease % per year
1.405	$2439 {\pm} 50$	$1970 {\pm} 50$	0.67
1.415	$2470 {\pm} 50$	$1885 {\pm} 40$	0.67
1.44	2328 ± 50	$1793 {\pm} 40$	0.66
1.44	2367 ± 20	1813 ± 55	0.66
3.15	1258 ± 38	1030 ± 30	0.62
3.2	1279 ± 58	1008 ± 45	0.61
4.08	1084 ± 26	860 ± 20	0.59
6.66	684 ± 20	548 ± 16	0.57
8.25	615 ± 22	$497 {\pm} 18$	0.55
10.7	468 ± 0	388 ± 0	0.54
13.49	$394{\pm}13$	323 ± 11	0.53
14.5	367 ± 10	310 ± 9	0.52
15.5	376 ± 18	309 ± 15	0.51
16	$354{\pm}11$	292 ± 9	0.51
22.28	285 ± 10	236 ± 9	0.49
32	224 ± 6	192 ± 5	0.47
33	211 ± 5	183 ± 5	0.47
86	115 ± 4	100 ± 4	0.41
87	$109.4 {\pm} 0$	$95.4{\pm}0$	0.41
140	78.3 ± 7	$69.1 {\pm} 6.2$	0.38
250	$51.8 {\pm} 5.6$	47.2 ± 5.3	0.36

Table 2. Cassiopeia A flux density for epochs 1965 and 2000.

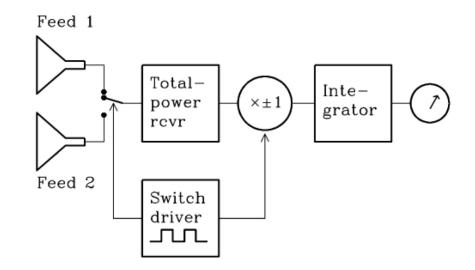
Cas A and Tau A are supernova remnants that are fading with time as they expand

Receiver stability

For total power measurements, sensitivity is almost always limited by receiver stability (1/f noise) and not by thermal noise!

Receiver stability

$$egin{aligned} &\sigma_{ ext{total}}^2 = \sigma_{ ext{noise}}^2 + \sigma_{ ext{G}}^2 \ &\sigma_{ ext{total}}^2 = T_{ ext{sys}}^2 iggl[rac{1}{\Delta
u_{ ext{RF}} au} + iggl(rac{\Delta G}{G} iggr)^2 iggr] \end{aligned}$$


The *practical total-power radiometer equation* is thus:

$$\sigma_{
m T} pprox T_{
m sys} igg[rac{1}{\Delta
u_{
m RF} au} + igg(rac{\Delta G}{G} igg)^2 igg]^{1/2}$$

Clearly, gain fluctuations will significantly degrade the sensitivity unless

$$\left(rac{\Delta G}{G}
ight) \ll rac{1}{\sqrt{\Delta
u_{
m RF} au}}$$

Receiver stability

If the system temperatures are T_1 and T_2 in the two positions of the switch, then the receiver output is proportional to $T_1-T_2\ll T_1$ and the effect of gain fluctuations is only

$$\Delta T_{
m G} pprox (T_1 - T_2) rac{\Delta G}{G} \ll T_1 rac{\Delta G}{G} \ .$$