Deep Space

Science Meeting May 20, 2019

Dr. Richard Russel

DSES.science

Pulsar Galactic Navigation

- Pulsar Basics
- Galactic Path Planning
- Pulsar visibility along path
- Pulsar base period
- ATNF and SIMBAD database
- Pulsar simulator
- The use of Excel Solver to solve 3-dimensional galactic solution
- Selecting pulsars for navigation
- Solving Galactic Position based on pulsar observations

Pulsar Basics

Pulsar Rotation

Lighthouse Beams

Pulsar P-Pdot Map

Pulsar Geometry

Rotation axis
magnetic axis

Galactic Path Model

	Gal-X (pc) (Galactic-Centric)	Gal-Y (pc) (Galactic- Centric)	Gal-Z (pc) (Galactic- Centric)
Earth	0.00	8500.00	0.00
25%	103.47	8477.75	18.64
50%	206.94	8455.50	37.28
75%	310.41	8433.25	55.92
K452b	413.89	8411.00	74.55

Pulsar Observations Along Travel Path

Sources of Pulsar Data	\#	PSRJ		G1 (deg)	Gb (deg)	$\begin{aligned} & \text { P0 } \\ & (\mathrm{s}) \end{aligned}$			P1			$\begin{aligned} & \text { DIST } \\ & (\mathrm{kpc}) \end{aligned}$
	1	J0002+6216	CWp+17	117.327	-0.074	0.1153635682680	14	CWp+17	5.96703E-15	7	Cwp+17	*
ATNF Database	2	J0006+1834	cnt96	108.172	-42.985	0.69374767047	14	cn95	2.097E-15	12	Cn95	0.86
	3	J0007+7303		119.660	10.463	0.3158731909	3	awd +12	3.6039E-13	5	awd +12	1.40
www.atnf.csiro.au	4	J0011+08	dsm+16	106.228	-53.407	2.55287	0	dsm+16	*	0	*	5.40
	5	J0014+4746	dth78	116.497	-14.631	1.240699038946	11	$\underline{h l k+04}$	5.6446E-16	14	$\underline{h l k+04}$	1.78
	6	J0023+0923	hrm+11	111.383	-52.849	0.003050203104480002	7	$a \mathrm{abb}+18$	1.14234E-20	4	$a b b+18$	1.11
AIV \mathcal{F} Pulsar Catalogue	7	J0024-7204aa	phl +16	305.895	-44.889	0.00184	0	phl+16	*	0	*	2.69
-	8	J0024-7204ab	phl+16	305.891	-44.891	0.0037046394947985	6	frk+17	9.820E-21	9	$\underline{\text { frk+17 }}$	2.54
	9	J0024-7204C	$\underline{m l d}+90$	305.923	-44.892	0.00575677999551635	14	frk+17	-4.98503E-20	20	$\underline{\text { frk+17 }}$	4.69
	10	J0024-7204D	$\underline{m l r+91}$	305.881	-44.893	0.00535757328486573	9	$\underline{\text { frk+17 }}$	-3.4220E-21	9	$\underline{\text { frk+17 }}$	4.69
	11	J0024-7204E	$\underline{m 1 r+91}$	305.883	-44.883	0.00353632915276244	4	frk+17	9.85103E-20	6	frk+17	4.69
	12	J0024-7204F	mlr+91	305.899	-44.892	0.00262357935251262	4	$\underline{f r k+17}$	6.45029E-20	7	$\underline{\text { frk+17 }}$	4.69
	13	J0024-7204G	r1m+95	305.891	-44.893	0.00404037914356515	14	frk+17	-4.21584E-20	17	$\underline{\text { frk+17 }}$	4.69
	14	J0024-7204H	m1r+91	305.896	-44.902	0.00321034070935032	11	frk+17	-1.8294E-21	11	$\underline{\text { frk+17 }}$	4.69
	15	J0024-7204I	$\underline{m 1 r+91}$	305.892	-44.893	0.00348499206166289	13	$\underline{\text { frk+17 }}$	-4.5874E-20	3	$\underline{\text { frk+17 }}$	4.69
	16	J0024-7204J	$\underline{m 1 r+91}$	305.909	-44.903	0.00210063354535246	5	$\underline{\text { frk }+17}$	-9.7917E-21	9	$\underline{\text { frk+17 }}$	4.69

SIMBAD Database

http://simbad.u-strasbg.fr/simbad/

Path Angles to Pulsar

Galactic X-Y Plane

Galactic X-Z Plane

Galactic Y-Z Plane
Pulsar 14

Finding Angles

Can the Pulsar be seen on path?

Model to Calculate Galactic Angles

Model to Calculate Galactic Angles

Pulsars Mapped on the Galactic X-Y Plane

Solving the 3 Dimensional Position Basic Equations

$$
\begin{gathered}
P_{\text {base }}=P_{\text {observed }}+\dot{P}_{\text {dot }}(\text { distance in light years }) \\
\frac{P_{\text {base } 1}-P_{\text {observed } 1}}{\dot{P}_{\text {dot } 1}}=\text { Pulsar } 1 \text { observed distance } L Y
\end{gathered}
$$

$$
\begin{aligned}
& \sqrt{(\text { Trial } X-\text { Pulsar } 1 X)^{2}+(\text { Trial } Y-\text { Pulsar } 1 Y)^{2}+(\text { Trial } Z-\text { Pulsar } 1 Z)^{2}}=\text { Trial Pulsar } 1 \text { distance }(L Y) \\
& \sqrt{(\text { Trial } X-\text { Pulsar } 2 X)^{2}+(\text { Trial } Y-\text { Pulsar } 2 Y)^{2}+(\text { Trial } Z-\text { Pulsar } 2 Z)^{2}}=\text { Trial Pulsar } 2 \text { distance }(L Y) \\
& \sqrt{(\text { Trial } X-\text { Pulsar } 3 X)^{2}+(\text { Trial } Y-\text { Pulsar } 3 Y)^{2}+(\text { Trial } Z-\text { Pulsar } 3 Z)^{2}}=\text { Trial Pulsar } 3 \text { distance }(L Y)
\end{aligned}
$$

Pulsar 1 observed distance (LY) - Trial Pulsar 1 distance (LY)=delta 1
Pulsar 2 observed distance (LY) - Trial Pulsar 2 distance (LY) =delta 2
Pulsar 3 observed distance (LY) - Trial Pulsar 3 distance $(L Y)=$ delta 3
Solver set to find solution so that: delta $1+$ delta $2+$ delta $3=0$

Solver Model to Calculate Distances

Solver Configuration

Solver Error Based on the \# of Pulsars Observed

Is the Error Close Enough?

Location	Distance From Sun (km)	Distance from Sun (LY)
Jupiter	$778,000,000$	0.000082
Pluto	$5,906,376,272$	0.000624
Edge of Solar System	$9,000,000,000$	0.000951
8 Pulsar Error	$208,016,924,775$	0.021986
Alpha Centauri	$41,345,737,565,365$	4.370000

Putting it All Together

Navigation Plan for Earth to K452b

Navigation

Plan

- Plot path using galactic coordinates
- Choose pulsars that are visible along entire path

Underway Observations

- Stop and take observations
- Calculate new position
- Make course corrections accordingly

Chart Path using Galactic Coordinates

	Gal-X (pc) (Galactic-Centric)	Gal-Y (pc) (Galactic- Centric)	Gal-Z (pc) (Galactic- Centric)
Earth	0.00	8500.00	0.00
25%	103.47	8477.75	18.64
50%	206.94	8455.50	37.28
75%	310.41	8433.25	55.92
K452b	413.89	8411.00	74.55

Take Pulsar Observations at the 25% Path Point then use the solver to

Observed Pulsar periods

| Pulsar \# | Pulsar Jname | Recorded Period
 (seconds) |
| :---: | :---: | :---: | determine the galactic position

Solver Solution

Trial X (pc)	Trial Y (pc)	Trial Z (pc)
139.9948	8489.9997	15.0002

Pulsar \#	Pulsar Jname	Recorded Period (seconds)	Base Period of Pulsar (seconds)	$\begin{array}{\|c\|} \text { PDOT } \\ \text { (seconds/vear } \\ 1 \\ \hline \end{array}$	Gal-X (pc) (GalacticCentric)	Gal-Y (pc) (GalacticCentric)	$\begin{gathered} \text { Gal-Z (pc) } \\ \text { (Galactic-Centric) } \end{gathered}$	Delta Period (seconds)	Distance (LY)	Distance (pc)	Trial X (pc)	Trial Y (pc)	Trial Z (pc)
											139.9948	8489.9997	15.0002
											Trial Catc Dista	Delta (pc)	
6	0023+0923	0.003050203	0.003050204	3.60E-13	624.20	8744.37	-884.73	0.000000001	3434.2	1052.94	1052.94	0.0026	
119	0337+1715	0.002732589	0.002732591	5.57E-13	195.62	9608.26	-650.77	0.000000002	4248.6	1302.63	1302.63	0.0006	
272	0721-2038	0.015542394	0.015542407	1.39E-12	-218357	10047.83	-136.62	0.000000013	9137.5	2801.57	2801.56	0.0041	
1126	1643-1224	0.004621642	0.004621658	1.04E-12	447.57	3991.61	1758.90	0.000000016	15767.7	4834.38	4834.38	0.0000	
1626	$1804-0735$	0.023100858	0.023101007	1.50E-11	1092.73	5622.11	365.61	0.000000149	9922.6	3042.27	3042.28	0.0013	
2376	1932+2020	0.268269331	0.27218064	1.33E-07	7538.79	3333.19	101.87	0.003911309	29416.0	9019.00	9019.00	0.0041	
2575	2055+3630	0.22151318	0.221716656	1.15E-08	5434.34	7456.79	-541.55	0.000203477	17687.0	5422.85	5422.85	0.0050	
2616	2149+6329	0.380142661	0.380376183	5.30E-09	13109.57	11830.48	1759.72	0.000233522	44050.8	13506.02	13506.03	0.0050	
											sum	0.02266	

Position Error in X-Y Plane

Solver position based
on observed periods at 25% point

Required Course Updates All 3 Planes

Summary

- Pulsars can provide reasonable navigation accuracy for galactic flight
- Errors can be reduced by using a better "solver" than Excel
- We should be able to see the Earth position change using this method
-SETI
- Transmitting the binary code for 3 pulsars would provide our unique position in the galaxy
- Transmitting more than 3 pulsars would account for visibility angles of the ETI

