Deep Space Exploration Society Science Meeting

DSES Pulsar Simulator is used to test our equipment

June 22, 2020

Dr. Richard Russel

DrRichRussel@netscape.net

Information

- 9 ft Dish Down because hard drive crashed
- SuperSID Down because of hard drive crash
- Radio Jupiter still need to get a new receiver and setup at site (new member project?)
- Pulsar Last observation trip Saturday still can only get B0329+54
 - Learned the limits on setting up BW on N210 receiver
 - Improving the pulsar observing tool being built on EXCEL
 - Used the pulsar simulator to test the settings for the next observation trip
- SARA East Conference recommend everyone virtually attend: August 1-2 <u>www.radio-astronomy.org</u>
- DSES Pulsar featured on Neutron Star Group website http://www.neutronstar.joataman.net/

6-13-20 Observing Session: Issue with the gain of the N210 over the bandwidth

B0329+54
First attempt at 20 MHZ
Problem: Worse than 10 MHZ
Can I fix in RF and/or in PRESTO?

- 20 MHz BW
- Get same shape on both 60 ft dish and home yagi so I believe it is the N210
- Can I fix this make it flatter so PRESTO uses the entire BW?

It appears that the white area is not being used

- Is there a setting in PRESTO to allow me to recover this area?

Issue

- Gain is not flat across bandwidth
- Solution appears to be that BW needs to be even integer of 100/BW
- Ray and Rich took system to Ray's lab
- Used Ray's pulsar simulator and was able to synthesize a pulsar signal!

Pulsar System Test Setup

Pulsar Simulator

Designed and Built by Ray Uberecken

Pulse Width selector

Pulse rate selector

Attenuator

GNU Software

Frequency Counter and N210 Receiver

Frequency Counter

Pulse rate

N210 Receiver

GPS Antenna Input

Acquisition

Bandwidth

PRESTO Output using pulsar simulator

Pulsar Observing Team 6-13-20

Pulsar Equation

$$\Delta S_{min} = \beta \frac{2k_b \left(S/N_{min} \right) T_{sys}}{A_e \sqrt{n_p t_{int} \Delta f}} \sqrt{\frac{W}{P - W}}$$

 ΔS_{min} = minimum detectable flux density (watts per square metre per hertz - averaged over the period of the pulse)

 β = factor for imperfections in the observatory system, usually near to 1 (values >1 makes the system less sensitive)

 k_b = Boltzmann's constant (1.38064852 × 10⁻²³ Joules • K⁻¹)

 S/N_{min} = required minimum linear S/N for validation of result (professional require at least 6, amateurs \geq 4)

 T_{SVS} = System noise temperature (K^o)

 A_{e} = antenna aperture (m²)

 n_D = number of polarisations (usually 1 for amateurs, generally a maximum of 2)

 t_{int} = integration time (observation time in seconds)

 $\Delta f = \text{pre-detection bandwidth (Hz)}$

W = width of pulse (seconds)

P = period of pulse (seconds)

SARA Virtual Eastern Conference www.radio-astronomy.org

Questions?