Deep Space Exploration Society Science Meeting

HI Observations

SpectraCyber I v3.2

System Favorites Screen Player Scan Options Settings Port Web Help

OFFLINE	STATUS
Mode	= SPEC
Autosave	= Off
Noise Signal	= Off
ReScan	= On
Scan Rate	= 1×
Que	= Off
Spec Gain	= 01
Cont Gain	= 01
Rest Corr	= 00
IF BW KHz	= 15
Upper KHz	= + 0600
Lower KHz	= - 0600
Spec Int	= 000.30
Cont Int	= 000.30
Spec Offset V	= 001.00
Cont Offset V	= 001.00
IF Gain dB	= 010.00
Time/Step	= 001.00

January 25, 2021

Dr. Richard Russel

DrRichRussel@netscape.net

DSES.science

Information

- 9 ft Dish Spectracyber running
- SuperSID Working and porting data to Stanford
- Radio Jupiter still need to get a new receiver and setup at site
- Pulsar 408 MHz Trip 1-25-21
 - Attempted 5 different pulsars only got +54
 - Issues with B210
 - Issues with pointing system

Pulsar Trip 23 Jan 2021

- Configuration
 - B210 (no frequency standard)
 - 30 MHz
 - 425 MHZ center frequency (avoided RFI)
- Attempted
 - B0329+54 good, 15 min, 1100mJY, 30 MHz
 - B2111+46 No, 60 min, 230 mJY, 30 MHz
 - B2020+28 No, 180 min, 71 mJY, 30 MHz
 - B1937+21 No, 60 min, 240 mJY, 25 MHz

B0329+54 60 ft Dish 23 Jan 2021

Pulsar Trip Issues/Lessons Learned

- B0329+54: Conducted a 15 min run and was able to get a good detection. The picture, looked wavy, may mean that the B210 needed to have a more stable input clock.
- After all data was taken, discovered that the cable had a 3dB attenuator.
 - Note that the B210 has a very flat signal across the bandwidth
 - This means that the gain can be increased
 - Need to verify gain above 50 in the spectrum monitor
- Bandwidth used the max BW that the laptop could handle (30 MHz)
 - Change to 5, 10, 25, 50, or 100 MHz options only

Pulsar Trip Issues/Lessons Learned

- Get better laptop
 - Need USB 3 ports
 - Need more cores
- Pointing System Issues
 - Verified good pointing with the detection of B0329+54
 - Had a power glitch (site power)
 - Laptop screen froze but antenna continued to move and went into the stops
 - Had an accidental removal of power to the ethernet switch
 - Laptop screen froze and antenna went into the stops
 - Both events were corrected by manually moving antenna while pushing override button
 - Recommended correction: Add battery backup for Rasdberry Pis and ethernet switches and hubs

HI Observations

SpectraCyber I v3.2

System Favorites Screen Player Scan Options Settings Port Web Help

Neutral Hydrogen

https://astronomylog.files.wordpress.com/2013/06/hyperfine.jpg

Milky Way Galaxy

Figure 1: Milky Way Longitude and Latitude Coordinates (8), (9)

8. Charting the Milky Way From the Inside Out. [Online] 2015. https://www.nasa.gov/jpl/charting-the-milky-way-from-the-inside-out.

9. Galactic Navigation. [Online] http://chandra.si.edu/build/navigation.html.

HI Geometry

Sofue, Y. (2017). Galactic Radio Astronomy. Singapore: Springer.

Spectracyber Install at Haswell

SpectraCyber

SpectraCyber Display Computer

Figure 3: Communications Trailer and Equipment Rack

Spectracyber Data Collection

Figure 2: Observing Station for 60-foot Dish

Spectracyber Output

0	E	316	ŢŲ	8
				0.01

Mode	= SPEC
Autosave	= On
Noise Signal	= Off
ReScan	= On
Scan Rate	= 1×
Que	= Off
Spec Gain	= 05
Cont Gain	= 01
Rest Corr	= 00
IF BW KHz	= 30
Upper KHz	= + 0600
Lower KHz	= - 0600
Spec Int	= 001.00
Cont Int	= 000.30
Spec Offset V	= 002.70
Cont Offset V	= 000.00
IF Gain dB	= 025.00
Time/Step	= 001.00

KHz = 405 Vdc = 3.145

Spectracyber Example Output Galactic Rotation Data (10-20-18 Observations)

Milky Way Rotation Rates

Figure 5: Baseline Galaxy Rotation Curve (10)

10. Rudolph, Alexander. Understanding the Rotation of the Milky Way Using Radio Telescope Observations. [Online] http://euhou.obspm.fr/public/

Rotation Curves with Error Estimates

The plot of the results with error bars is shown in figure 5.

Calculating the Mass of the galaxy

M: Mass of galaxy (kg) V: Velocity of the galaxy at distance R (km/second) R: distance from galactic center (m) G: Gravitation constant $6.67x10^{-11}m^3kg^{-1}s^{-2}$

From the measured results in table 3, the calculated velocity of the galaxy at 8.05 ± 0.46 kpc is 243.3 ± 16.2 km/s. Entering these values into equation 5 with the appropriate conversions:

$$M = \frac{\left(243.3\frac{km}{s}x\frac{10^3m}{km}\right)^2 (8.05kpc) \left(\frac{3.09x10^{19}m}{1kpc}\right)}{(6.67x10^{-11}m^3kg^{-1}s^{-2})} = 2.21x10^{41}kg \quad (6)$$

$$M = (2.21x10^{41}kg) \left(\frac{1M_{Sun}}{2x10^{30}kg}\right) = 1.10x10^{11}M_{Sun} \quad (7)$$

The error range was calculated by substituting the Vo and Ro error ranges into the formulas which results in a total error range of:

$$M = 1.10x10^{11} \pm 0.22x10^{11} M_{Sun} \quad (8)$$

The estimate for the mass of the Milky Way has been estimated as (Sofue, 2017):

$$M = (1.0x10^{11})M_{Sun}\left(\frac{R}{Ro}\right) \quad (9)$$

The observed measurements, therefore, encompass the historic values of the Milky Way's mass.

Earth Position vs. Galactic Center

Figure 7: Earth's Approximate Yearly Orbital Position Relative to Galactic Center

Velocity Contribution to HI Source Measurements

Earth Orbital Position velocity Model

The maximum velocity of the Earth toward the galactic center is therefore:

$$V = 29.8 \frac{km}{s} \cos(60.2^\circ) = 14.8 \ km/s$$

Figure 3: Radial Velocity Calculation

Figure 10: Predicted Vr for HI ISM Sources at galactic longitudes 10° and 40°

HI Absorption Measurements

Figure 6: Dark Cloud Target using the RASDR-2, RASDR-4 and SpectraCyber

9-foot Dish

Figure 1.9- Foot dish in Colorado Springs Colorado

9-foot dish

focus distance =
$$\frac{D^2}{16H}$$
 (1)

D=9 ft x 12 in/ft = 108 in

H is the depth of the dish from rim to base measured at 22 in

Focus distance = 33.1 in above center of dish

Calibrating Pointing

Figure 3: Azimuth Calibration using the Sun

Plotting the Signal Strength against RA/DEC

Russel Observatory

HI Spectrum Peak Map Survey

Right Ascension (Hours)

Plotting the Signal Strength vs Galactic LAT/LONG

Russel Observatory HI Spectrum Peak Map Survey

Plotting the HI Velocity vs Galactic Longitude

Galactic Longitude

dv/dL Method Geometry (1)

1. Sofue, Yoshiaki. Galactic Radio Astronomy. s.l. : Springer, 2017. ISBN 978-981-10-3444-2.

Plotting the HI Velocity vs Galactic Longitude

Figure 5: Velocity - Galactic Longitude map (7)

7. The Milky Way in Molecular Clouds: A New Complete CO Survey. T. M. Dame, Dap Hartmann, P. Thaddeus. s.l. : Harvard-Smithsonian Center for Astrophysics, 2000. <u>https://arxiv.org/abs/astroph/0009217</u>

HI Data from Haswell Plotted

Figure 7: All HI Data plotted

Detection of Galactic Arms

13: HI Results Plotted on NASA Galaxy Map

Figure 12: H1 data plotted showing distance to galactic center

2020/21 Observation/ Feed Schedule

- January 2021
 - Week 1-4 408 MHz Pulsar Observations
 - (Note: the feeds can be varied based on science interests from 408/ 1296/1420 MHz)
 - 4 GHz Calibration feed
- February 2021
 - 408 MHZ Feed for pulsar observations
 - 1296 MHz if EME team wants it

Questions?