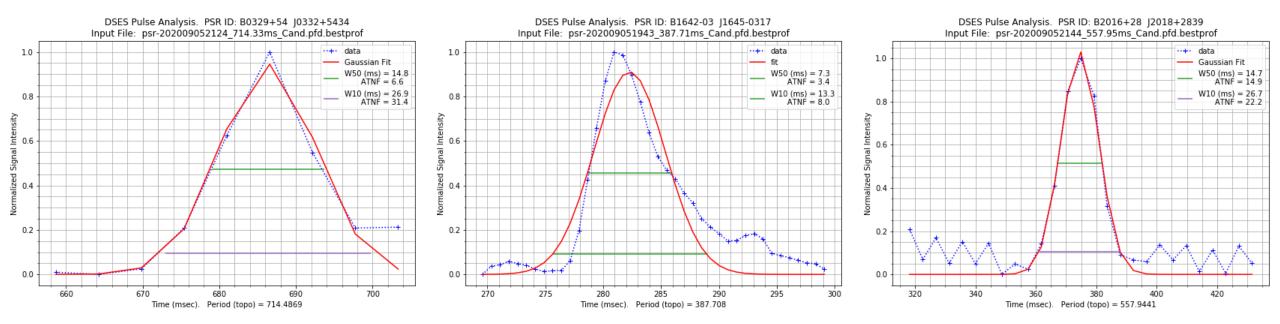

Deep Space Exploration Society Science Meeting

SAOImage ds9

File Edit View Frame Bin Zoom Scale Color Region WCS Analysis Help

February 22, 2021 Dr. Richard Russel DrRichRussel@netscape.net

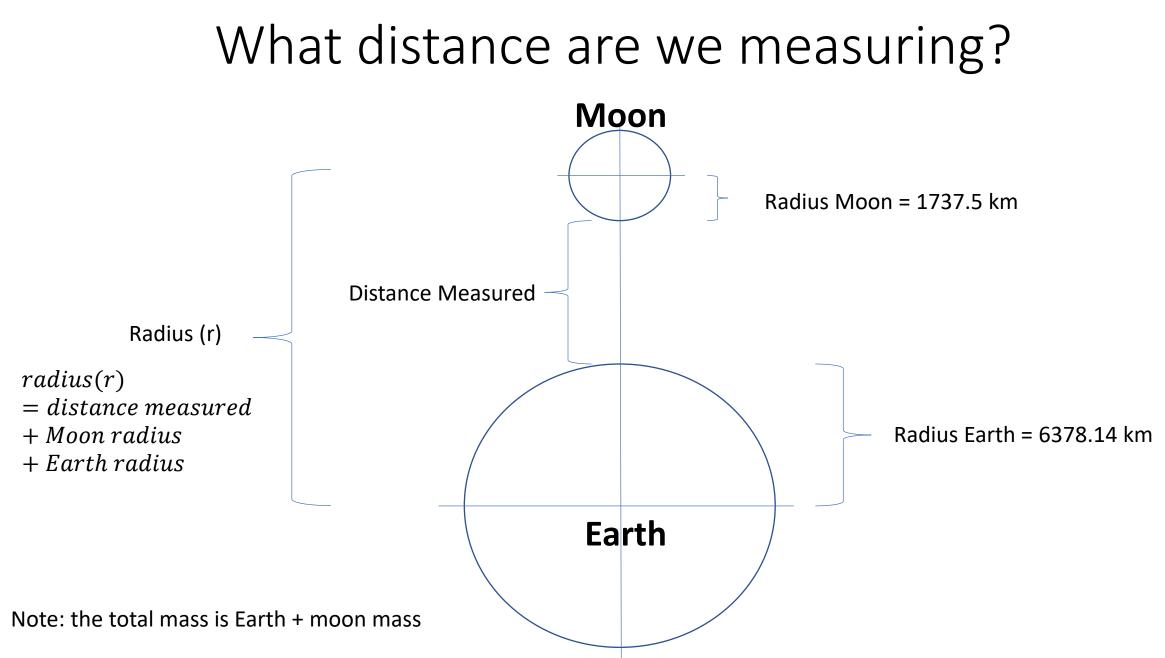

DSES.science

WSB52 Planetary Disk from ALMA FITS File

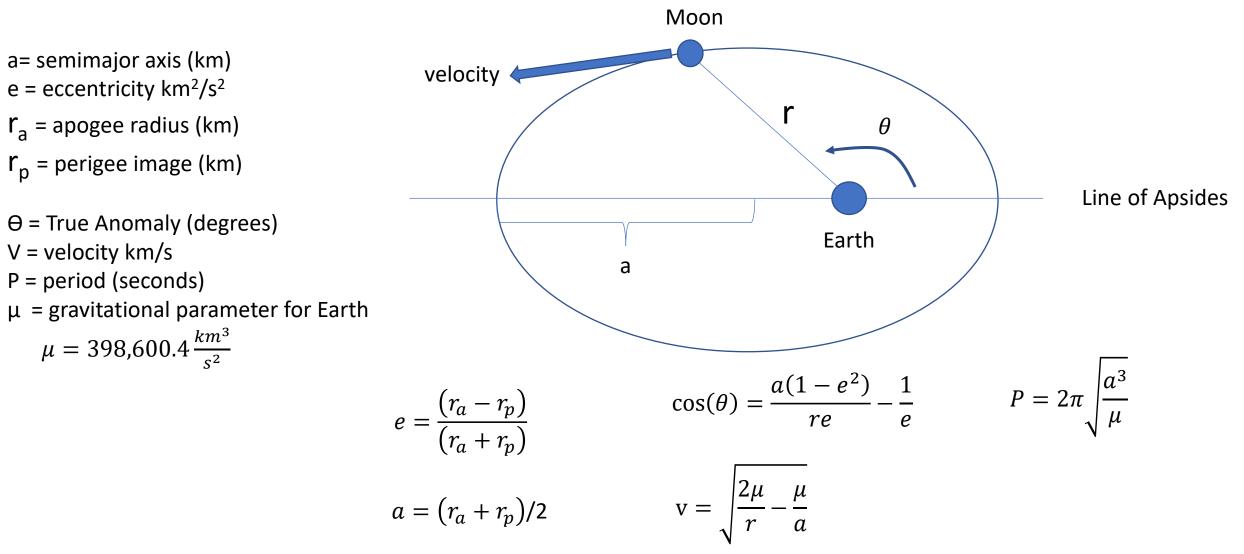
Information

- 9 ft Dish Spectracyber running
- SuperSID Working and porting data to Stanford
- Radio Jupiter still need to get a new receiver and setup at site
- Pulsar 408 MHz Waiting on good weather
- Tropospheric transmission 1296 MHz feed available
- EME systems 1296 MHz feed available
- Moon Orbit determination using EME equipment

Dan Layne Analysis of Pulsar Data



Moon Range and Orbit determination


- Use CW transmit and receive
- Measure difference between transmit and arrival times
- Determine moon distance

Distance Measured = 299,792.458 km/sec x $\Delta t/2$ + calibration

- Read the Azimuth and elevation angles from the pointing system
- Record time in UTC

Orbital Mechanics

Earth to Moon Distances for 2021

Perigees

Date	Local Time	Distance in km	Distance in miles
Jan 9	8:36 am	367,387 km	228,284 mi
Feb 3	12:03 pm	370,116 km	229,980 mi
Mar 1	10:18 pm	365,423 km	227,063 mi
Mar 30	12:16 am	360,309 km	223,886 mi
Apr 27	9:22 am	357,378 km	222,064 mi
May 25	7:50 pm	357,311 km	222,023 mi
Jun 23	3:54 am	359,956 km	223,666 mi
Jul 21	4:23 am	364,520 km	226,502 mi
Aug 17	3:15 am	369,124 km	229,363 mi
Sep 11	4:03 am	368,461 km	228,951 mi
Oct 8	11:27 am	363,386 km	225,797 mi
Nov 5	4:17 pm	358,844 km	222,975 mi
Dec 4	3:03 am	356,794 km	221,702 mi

Apogees

Date	Local Time	Distance in km	Distance in miles
Jan 21	6:11 am	404,360 km	251,258 mi
Feb 18	3:21 am	404,467 km	251,324 mi
Mar 17	11:03 pm	405,253 km	251,812 mi
Apr 14	11:45 am	406,119 km	252,350 mi
May 11	3:53 pm	406,512 km	252,595 mi
Jun 7	8:27 pm	406,228 km	252,418 mi
Jul 5	8:46 am	405,341 km	251,867 mi
Aug 2	1:35 am	404,410 km	251,289 mi
Aug 29	8:22 pm	404,100 km	251,096 mi
Sep 26	3:43 pm	404,640 km	251,432 mi
Oct 24	9:28 am	405,615 km	252,038 mi
Nov 20	7:12 pm	406,279 km	252,450 mi
Dec 17	7:14 pm	406,320 km	252,475 mi

Moon Distance Calculator – How Close is Moon to Earth? (timeanddate.com)

Calculate the Moon's orbit

- Measure the distance to the moon: example
 - March 1: measure delta time Δt1 (seconds): 2.38 seconds (for 357,307 km)
 - March 17: measure delta time Δt2 (seconds): 2.64 seconds (for 397,137 km)
- Calculate r_a and r_p
 - March 1 measurement r_p = 299,792.458 km/sec x (2.38 seconds)/2 + 6378.14 km + 1737.5 km = 365,423 km
 - March 17 measurement r_a = 299,792.458 km/sec x (2.64 seconds)/2 + 6378.14 km + 1737.5 km = 405,253 km

• Semimajor axis (a)
$$a = (r_a + r_p)/2$$
 $a = \frac{(405,253 \text{ km} + 365,423 \text{ km})}{2} \text{ km} = 384,360 \text{ km}$
Actual = 384,400 km

- Eccentricity $e = \frac{(r_a - r_p)}{(r_a + r_p)} \qquad e = \frac{(405,253 \ km - 365,423 \ km)}{(405,253 \ km + 365,423 \ km)} = 0.0517$ Actual = 0.0549
- Period $P = 2\pi \sqrt{\frac{a^3}{\mu}} \qquad P = 2\pi \sqrt{\frac{(384,360km)^3}{398,600.4\frac{km^3}{s^2}}} = 2,371,428.87 \text{ seconds} = 27.45 \text{ days}$ Actual = 27.32 days

Measured Mass of Earth-Moon System $G = 6.67x10^{-11} \frac{m^3}{kgs^2}$ $Mass_{Earth-Moon} = \frac{4\pi^2 r^3}{Gt^2}$ r = 384.360 x 106 m t = 2,371,428.87 seconds

$$Mass_{Earth-Moon} = \frac{4\pi^2 (384.360 \ x \ 10^6 \ m)^3}{\left(6.67 x 10^{-11} \ \frac{m^3}{kgs^2}\right) (2,371,428.87 seconds)^2}$$

 $Mass_{Earth-Moon} = 5.976 \times 10^{24} kg (measured)$

Accuracy

 $Mass_{Earth-Moon} = 5.976 x \, 10^{24} kg (measured)$

 $Mass_{Moon} = 7.347 \ x \ 10^{22} \ kg \ (given)$

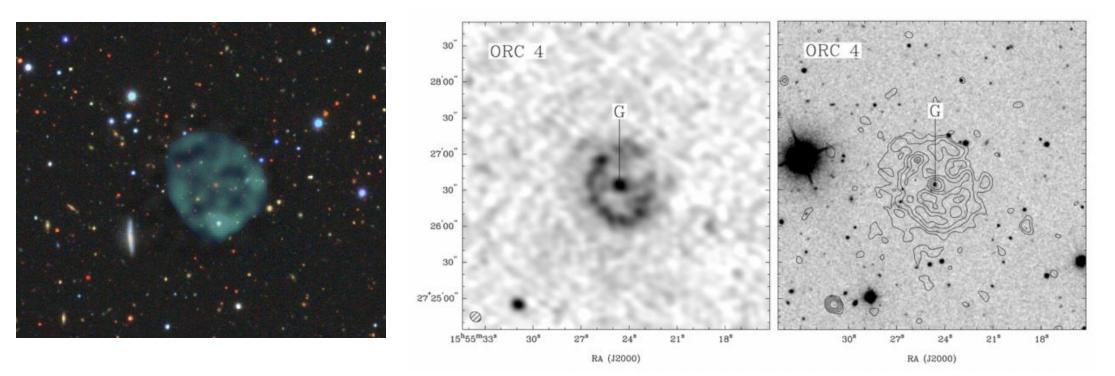
 $Mass_{Earth measured} = 5.9035 x 10^{24} kg$

 $Mass_{Earth actual} = 5.98 \times 10^{24} kg$

$$error = \frac{Mass_{Earth measured} - Mass_{Earth actual}}{Mass_{Earth actual}} = \frac{5.9035 \, x \, 10^{24} kg - 5.98 \, x \, 10^{24} \, kg}{5.98 \, x \, 10^{24} kg} = -0.0128 = -1.28\% \text{ error}$$

Excel Model

1	Parameter	Value	Units				
2	delta t perigee	2.38	seconds				
3	delta t apogee	2.64	seconds				
4	speed of light (c)	299792.458	km/s				
5	r perigee	3.6487E+05	km				
6	r apogee	4.0384E+05	km				
7	semi-major axis (a)	3.8436E+05	km				
8	eccentricity	0.05070					
9	Period	2,371,428.87	seconds				
10	Period (days)	27.45	days				
11	G	6.67E-11	m^3/(kgs^2)				
12							
13	Earth-Moon mass measured	5.9760E+24	kg				
14	Earth - Moon Mass actual	6.0535E+24	kg				
15		-1.28%	error				
16							
17	Ratio Earth/Moon mass	81.39377	ratio		Use Solver		
18	Earth mass measured	5.9035E+24	kg		Total	Earth Mass	Moon Mass
19	Moon Mass measured	7.2530E+22	kg	Measure	5.9760E+24		
20					5.9760E+24	5.9035E+24	7.2530E+22
21	Moon mass actual	7.347E+22	kg	Delta	0.0000E+00		
22		-1.28%	error				
23							
24	Earth mass actual	5.9800E+24	kg				
25		-1.28%	error				


What do we need to do to measure this?

- Need to measure the delay between transmit and receive from Earth to Moon and Back within 100th of a second
- Possible Approaches
 - Build arduino stopwatch
 - Arduino controls relay that sends CW pulse (starts clock)
 - Arduino receiver receives return pulse (stops clock)
 - Arduino can automatically calculate Earth to Moon radius
 - Measure time delay with oscilloscope
- Take multiple measurements to find the highest (apogee) and lowest (perigee) distances

 the accuracy should improve with more measurements
- Use EME video to get first measurements of time delays
- Calibration can be accomplished by comparing measured vs. actual values
 - Most likely the calibration would subtract from the delay time
- Calculate the rest of the Moon orbit values left to student

Odd Radio Circle (ORC)

• Phenomenon seen only radio frequencies where the object is circular and brighter along the edges

wtfnewlydisc.jpg (600×512) (b-cdn.net)

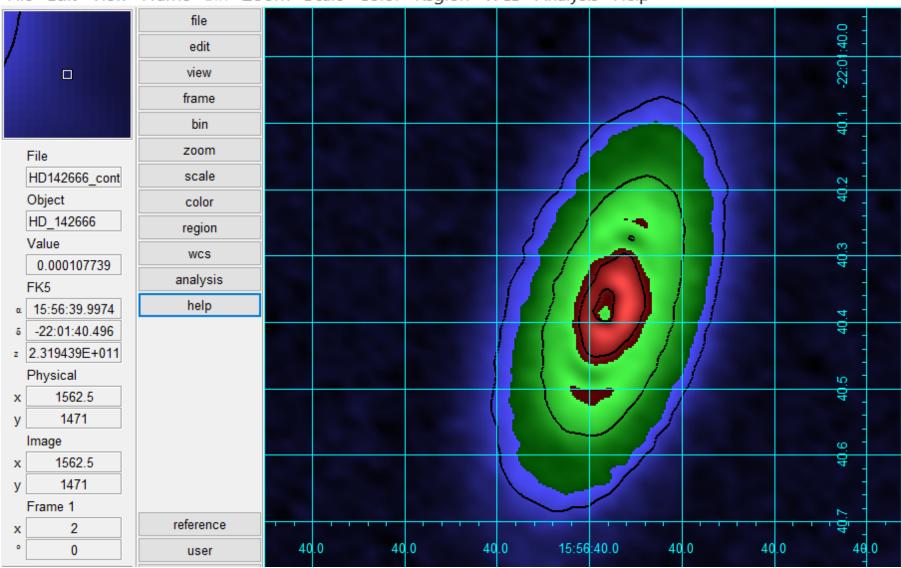
odd radio circle alma - Bing images

Displaying and Analyzing Planetary Disks

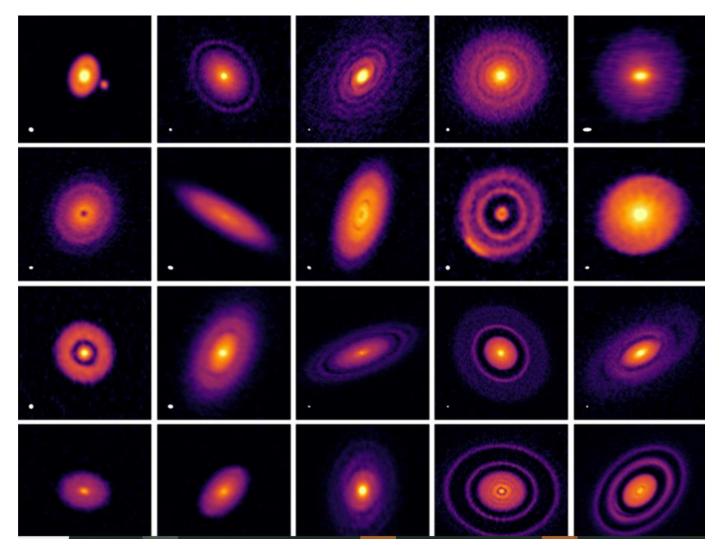
Disk Substructures at High Angular Resolution Project (DSHARP)

Goal is to display and analyze planetary disks that were measured by ALMA

- 1) Download FITS viewer (selected SAO Image DS9 viewer
- 2) Download DSHARP FITS files
- 3) Use the FITS viewer to analyze the data
 - <u>SAOImageDS9 (google.com) https://sites.google.com/cfa.harvard.edu/saoimageds9/home</u>
 - DSHARP DATA RELEASE (nrao.edu)


https://almascience.nrao.edu/almadata/lp/DSHARP/

FITS Image Viewer (SAOImage ds9)


SAOImage ds9

- 🗆 X

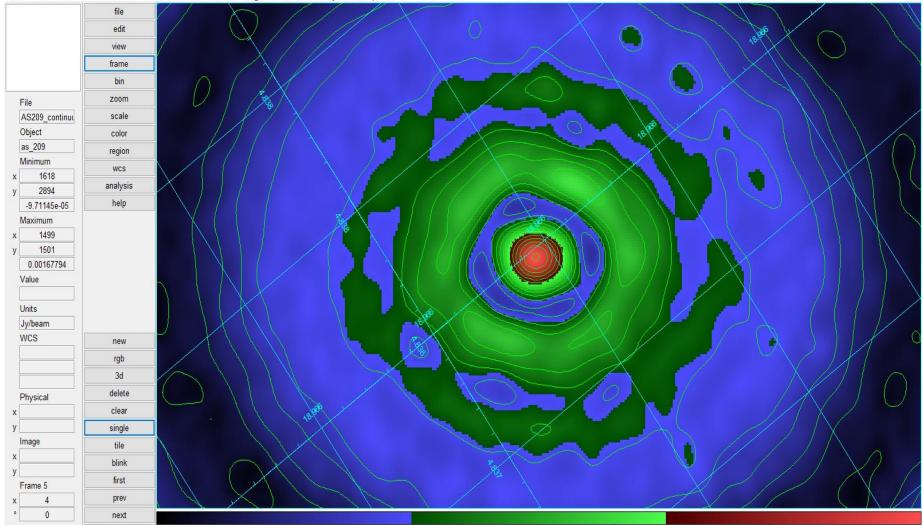
File Edit View Frame Bin Zoom Scale Color Region WCS Analysis Help

ALMA Imaging for DSHARP Project

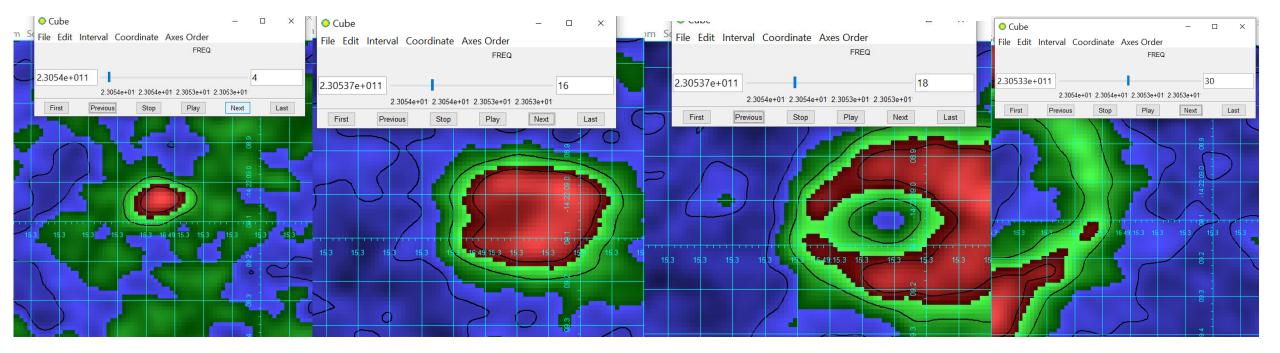
https://almascience.nrao.edu/almadata/lp/DSHARP/

Data Downloads

Target	Scripts (.py)	Final Calibrated MS (.tar.gz)	Fiducial Images (.fits)	profiles (ascii); README	SEDs (ascii)
HT Lup	continuum; CO	continuum (0.8 GB); CO (0.6 GB); CO+cont (0.6 GB)	continuum (62 MB); CO (1.9 GB)	continuum profile	SED
GW Lup	continuum; CO	continuum (0.8 GB); CO (0.5 GB); CO+cont (0.5 GB)	continuum (35 MB); CO (518 MB)	continuum profile	SED
IM Lup	continuum; CO	continuum (1.8 GB); CO (0.8 GB); CO+cont (0.8 GB)	continuum (62 MB); CO (920 MB)	continuum profile	SED
RU Lup	continuum; CO	continuum (0.9 GB); CO (0.7 GB); CO+cont (0.7 GB)	continuum (35 MB); CO (518 MB)	continuum profile	SED
Sz 114	continuum; CO	continuum (0.5 GB); CO (0.4 GB); CO+cont (0.4 GB)	continuum (35 MB); CO (518 MB)	continuum profile	SED
Sz 129	continuum; CO	continuum (0.9 GB); CO (0.6 GB); CO+cont (0.6 GB)	continuum (35 MB); CO (518 MB)	continuum profile	SED
MY Lup	continuum; CO	continuum (0.9 GB); CO (0.6 GB); CO+cont (0.6 GB)	continuum (35 MB); CO (518 MB)	continuum profile	SED
HD 142666	continuum; CO	continuum (0.8 GB); CO (0.6 GB); CO+cont (0.6 GB)	continuum (35 MB); CO (518 MB)	continuum profile	SED
HD 143006	continuum; CO	continuum (1.0 GB); CO (0.8 GB); CO+cont (0.8 GB)	continuum (35 MB); CO (1.3 GB)	continuum profile	SED
AS 205	continuum; CO	continuum (0.5 GB); CO (0.4 GB); CO+cont (0.4 GB)	continuum (35 MB); CO (518 MB)	continuum profile	SED
SR 4	continuum; CO	continuum (1.1 GB); CO (0.8 GB); CO+cont (0.8 GB)	continuum (35 MB); CO (518 MB)	continuum profile	SED
Elias 20	continuum; CO	continuum (1.0 GB); CO (0.6 GB); CO+cont (0.6 GB)	continuum (35 MB); CO (518 MB)	continuum profile	SED
DoAr 25	continuum; CO	continuum (0.5 GB); CO (0.4 GB); CO+cont (0.4 GB)	continuum (35 MB); CO (518 MB)	continuum profile	SED
Elias 24	continuum; CO	continuum (0.8 GB); CO (0.5 GB); CO+cont (0.5 GB)	continuum (35 MB); CO (518 MB)	continuum profile	SED
Elias 27	continuum; CO	continuum (1.0 GB); CO (0.7 GB); CO+cont (0.7 GB)	continuum (62 MB); CO (920 MB)	continuum profile	SED
DoAr 33	continuum; CO	continuum (1.1 GB); CO (0.7 GB); CO+cont (0.7 GB)	continuum (35 MB); CO (518 MB)	continuum profile	SED
WSB 52	continuum; CO	continuum (1.0 GB); CO (0.6 GB); CO+cont (0.6 GB)	continuum (35 MB); CO (518 MB)	continuum profile	SED


https://almascience.nrao.edu/almadata/lp/DSHARP/

AS 209


SAOImage ds9

– 0 X

File Edit View Frame Bin Zoom Scale Color Region WCS Analysis Help

AS209 CO Analysis Frequency Mapping

Measured frequency increases

2020/21 Observation/ Feed Schedule

- February 2021
 - 408 MHZ Feed for pulsar observations
 - 1296 MHz if EME team wants it
- March 2021
 - 408 MHZ Feed for pulsar observations
 - 1296 MHz if EME team wants it
- April 2021
 - 408 MHZ Feed for pulsar observations
 - 1296 MHz if EME team wants it

Questions?