Deep Space Exploration Society Science Meeting

<u>First M87 Event Horizon Telescope Results. IV. Imaging the</u> <u>Central Supermassive Black Hole - IOPscience</u> May 24, 2021 Dr. Richard Russel, ACOUB DrRichRussel@netscape.net

DSES.science

Information

- 9 ft Dish Spectracyber running
 - Plan to add RTL-SDR
 - Plan to view S7 and S8 to check calibration
- SuperSID Working and porting data to Stanford
- Radio Jupiter still need to get a new receiver and setup at site
- Pulsar:
 - Dan Layne fixed Ubuntu/ python 3.8 issue with gnu software
 - B210 capable of 50 MHz on 1 channel data acquisition without degradation
 - Significant issue with computer freezing and rebooting
 - System 76 thinks it is unstable ubuntu operating system
 - I think it is a heat issue with 32 cpus
 - Need to reload ubuntu and gnu software due to troubleshooting
- Tropospheric transmission 1296 MHz feed available
- EME systems 1296 MHz feed available
- Moon Orbit determination using EME equipment
- Don Latham contact with 2nd 60 ft dish

Black Hole Resolution with Radio Astronomy Interferometers

- Define the size of the observable black hole parts
 - Find the black hole Schwarzschild radius
 - Find the photon sphere radius
 - Find the radius of innermost closest stable orbit
- Determine the angular diameter of the black hole
- Based on antenna diameter determine synthesized beamwidth
 - Compare different interferometers
- Show SGRA*, M87*, IC1101* (largest black hole) and Andromeda*(2nd closest supermassive black hole) results

Black Hole Anatomy

Relativistic Jet

Accretion disc

Event horizon

Singularity

At the very centre of a black hole, matter has collected into a region of infinite density called a singularity. All the matter and energy that fail into the black hole must up them. The prediction of infinite density by general relativity a theory of the second the breakdown of the theory where quantum effects because a constru-

Event horizon

This is the radius around a singularity where matter and energy cannot escape the black hole's gravity: the point of no return This is the "black" pert of the black hole.

Photon sphere

Although the black hole itself is dark, photons are emitted from nearby hot plasma in jets or an accretion disc (see below). In the absence of privity, these photons would travel in straight lines, but just outside the event houron of a black hole, gravity is strong enough to bend their paths so that we see a bright ring surrounding a roughly circular dark "shadow". The Event Honizon Telescope is hoping to see both the ring and the "shadow".

Relativistic jets

When a black hole feeds on stars, gas or dust, the meal produces jets of policies and radiation blasting out from the black hole's poles at near light speed. They can extend for thousands of light-years into space. The GMVA will study how these jets koms

Innermost stable orbit

The inner edge of an accretion disc is the last place that material can orbit safety without the risk of failing past the point of no return.

Accretion disc

A disc of superheated gas and dust whits around a black hole at immense speeds, producing electromagnetic radiation (X-rays, optical, infrared and radio) that raveal the black hole's location. Some of this material is doorned to cross the event horizon, while other parts may be forced out to create jets. Singularity

Photon sphere

Innermost stable orbit

What are the parts of a black hole? - Quora

Black Hole Parts Distance Estimates

- Schwartzschild Radius (Rsch) $R_{Sch} = \frac{2GM}{c^2}$ km
- Photon Sphere: 1.5 Rsch
- Innermost Stable Orbit non-rotating black hole: 3 Rsch
- Innermost Stable Orbit rotating black hole: 4.5 Rsch

Black Hole Angular Diameter

Angular Diameter
$$\delta = 206,265 \left(\frac{d}{D}\right) arcseconds$$

d: object radius (km) – use RschD: object distance (km)

Telescope Resolution

$$heta_{HPBW} = rac{\lambda}{D}$$
 radians

 λ : *Telescope wavelength (meters)*

D: Maximum antenna spacing (meters)

Visualizing Resolution

- Think of the resolution beamwidth as the pixel size.
- The best definition of the image uses as many pixels as possible, smaller than the image, to define the structures
- If the pixel is bigger than the image then it is only one intensity describing the entire image and any overlap signal from the image background.

Better definition of image

Astrometric Data

- M87* mass 6.5x10⁹ Msun
- M87* distance 1.67x 10⁴ kpc
- SGRA* mass 4.26 x10⁶ Msun
- SGRA* distance 8.32 kpc
- IC1101* mass 50-70 x 10⁹ Msun
- IC1101* distance 3.204 x 10⁵ kpc
- Andromeda* mass 1.08x 10⁸ Msun
- Andromeda* distance 765 kpc

Calculations

	Control Panel				
Parameter	Min	Max	Pandom	Units	30 EVENT HORIZON
Sup Volgoity	220.00	220.00	220.0	lkm/c	31 Angular Diameter M87 Event Horizon 7.685-06 arcseconds 7.685 uai
Sun Velocity	220.00	220.00	220.0		32 Angular Diameter SGRA* Event Horizon 1.01E-05 arcseconds 10.110 uai
Sun Distance from Galactic Center	8.32	8.50	8.4	kParsecs	33 Angular Diameter IC1101* Event Horizon 3.70E-07 arcseconds 0.370 uai
Mass M87	6.50E+09	6.50E+09	6.50E+09	Msun	34 Angular Diameter Andromeda* Event Horizon 2.79E-06 arcseconds 2.788 uar
Mass SGR A*	4.26E+06	4.26E+06	4.26E+06	Msun	35 TELESCOPE RESOLUTION
Mass IC1101	6.00E+10	6.00E+10	6.00E+10	Msun	36 GBT 115 GHz 6.50E+09 uai
Mass Andromeda	1.08E+08	1.08E+08	1.08E+08	Msun	37 Resolution VLA (45 GHz) 1.85E-04 radians 38,170.80 uar
G	6.67E-11	6.67E-11	6.67E-11		38 Resolution EHT (230 GHz) 1.02E-07 radians 21.08 uar
Msun	1.99E+30	1.99E+30	1.99E+30	kg	39 Resolution EHT (345 GHz) 6.81E-08 radians 14.05 uar
c (km/s)	3.00E+08	3.00E+08	3.00E+08	3	40 Resolution EVN+VLBA (0.7 cm) (42.83 GHz) 140.00 uai
2 Rm87 (kpc)	1.67E+04	1.67E+04	1.67E+04	Ļ	41 PHOTON SPHERE
Rsgra* (kpc)	8.32E+00	8.32E+00	8.32E+00		42 R Photon sphere M87 2.88E+13 km
					43 R photon sphere SGRA* 1.89E+10 km
VLA Max sep (km)	3.60E+04	km			44 R photon sphere IC1101* 2.66E+14 km
VLA Freq (HZ)	4.50E+10	Hz			45 R photon sphere Andromeda* 4.78E+11 km
EHT Max Sep (m)	1.28E+07	m	Earth Diam		46 Angular Diameter photon sphere M87 1.15E-05 arcseconds 11.53 uar
EHT Freq (HZ)	2.30E+11	Hz			47 Angular Diameter photon sphere SGRA* 1.52E-05 arcseconds 15.17 ua
EHT freq (HZ) - new	3.45E+11	Hz			48 Angular Diameter photon sphere IC1101* 5.55E-07 arcseconds 0.55 uai
Resolution EVN+VLBA (0.7 cm) (42.83 GHz)	4.23E+10	Hz			49 Angular Diameter photon sphere Andromeda* 4.18E-06 arcseconds 4.18 ua
In	Independent Equations 50 50 50 INNERMOST STABLE ORBIT				
Rsch M87	1.92E+13	km			51 R Innermost Stable Orbit rotating M87 8.64E+13 km
Rsch SGR A*	1.26E+10	km			52 R Innermost Stable Orbit rotating SGRA* 5.66E+10 km
Rsch IC1101*	1.77E+14	km			53 R Innermost stable orbit IC1101* 7.97E+14 km
Rsch Andromeda*	3.19E+11	km			54 R Innermost stable orbit Andromeda* 1.44E+12 km
D M87 kpc	1.67E+04	kpc			55 Angular Diameter IMSO M87 3.46E-05 arcseconds 34.58 uai
D SGR A* kpc	8.32E+00	kpc			56 Angular Diameter IMSO SGRA* 4.55E-05 arcseconds 45.50 uai
D IC1101*	3.20E+06	kpc			57 Angular Diameter IMSO IC1101* 1.66E-06 arcseconds 1.66 ua
D Andromeda*	7.65E+02	kpc			58 Angular Diameter IMSO Andromeda* 1 25E-05 arcseconds 12 54 ua

Schwarzschild radius of the black hole event horizon

Event Horizon Angular Diameters compared to EHT 230 GHz and 345 GHz Resolutions

Photon Sphere Angular Diameters compared to EHT 230 GHz and 345 GHz Resolutions

Innermost Stable Orbit Angular Diameters compared to EHT 230 GHz and 345 GHz Resolutions

https://www.gb.nrao.edu/~rmaddale/Education/GBTFundamentalsSingle-DishTelescopes.pdf

Very Long Baseline Array (VLBA)

Locations of VBA bases

Toponym	U.S. state	Geographic coordinate system	
St. Croix	U.S. Virgin Islands	🔍 17.75652°N 64.58376°W	SC
Hancock	New Hampshire	🔍 42.93362°N 71.98681°W	HN
North Liberty	Iowa	🔍 41.77165°N 91.574133°W	NL
Fort Davis	Texas	🔍 30.635214°N 103.944826°W	FD
Los Alamos	New Mexico	🔍 35.7752887°N 106.2455897°W	LA
Pie Town	New Mexico	🔍 34.30107°N 108.11912°W	PT
Kitt Peak	Arizona	🔍 31.956253°N 111.612361°W	KP
Owens Valley	California	🔍 37.23176°N 118.27714°W	OV
Brewster	Washington	🔍 48.13117°N 119.68325°W	BR
Mauna Kea	Hawaii	🔍 19.80159°N 155.45581°W	MK

High-Sensitivity Array [edit]

The use of the VLBA can be scheduled dynamically, and its sensitivity can be improve as the Arecibo radio telescope in Puerto Rico, the Green Bank Telescope in West Virg Effelsberg radio telescope in Germany. These four additional sites are brought online configuration, the entire array is known as the **High-Sensitivity Array** (**HSA**).^[5]

High-Sensitive	Array locations
----------------	-----------------

Toponym	State	Geographic coordinate system	
Arecibo	Puerto Rico	🔍 18°20'36.60"N 66°45'11.10"W	AR
Green Bank	West Virginia	🔍 38°25′59.24″N 79°50′23.41″W	GB
Very Large Array	New Mexico	🚑 34°04'43.75"N 107°37'05.91"W	Y27
Effelsberg	Germany	😂 50°31'30"N 6°53'00.3"E	EB

Figure: The averaged 23-epoch VLBA image of the relativistic jet and counterjet in M87 providing new insights on the formation and evolution of extragalactic jets. The image resolution is 0.43x0.21 milli-arsec (corresponding to linear scales of 0.017-0.034 parsecs at the M87 redshift), and the noise level is 62 µJy/beam. Credits: NRAO/Walker et al. (2018), <u>The Structure and Dynamics of the Subparsec Jet in M87 Based on 50 VLBA Observations over 17 Years at 43 GHz</u>.

Introduction to the VLBA — Science Website (nrao.edu)

Very Long Baseline Array - Wikipedia

European VLBI Network (EVN)

EVN-Newsletter-59.pdf (evlbi.org)

EHT Antenna Locations

THE ASTROPHYSICAL JOURNAL LETTERS, 875:L2 (28pp), 2019 April 10

The EHT Collaboration et al.

Radio telescope and astronomical object Comparison

LOG (Resolution) Radio Telescope Comparison

Event Horizon telescope observation at 240 GHz

Figure 15. Averages of the three fiducial images of M87 for each of the four observed days after restoring each to an equivalent resolution, as in Figure 14. The indicated beam is 20 μ as (i.e., that of DIFMAP, which is always the largest of the three individual beams).

The Astrophysical Journal Letters, 875:L4 (52pp), 2019 April 10

<u>First M87 Event Horizon Telescope Results. IV. Imaging the</u> <u>Central Supermassive Black Hole - IOPscience</u>

Summary

- Black holes observations are dependent on mass and distance
- Telescope observations are dependent on maximum antenna spacing and frequency
- SGRA* should be "easier" to observe with the EHT than M87*
 - Issue is probably dust blocking observation
- IC1101* and Andromeda* angular diameters are too low for the EHT to resolve the black hole parts
 - Andromeda* is almost the same angular diameter as the EHT at 345 GHz resolution should be able to see a rough image
- This analysis does not go into the # of antennas and observation time to get proper UV coverage

More Science: FRB Path Analysis

Schematic illustrating how transient radio signals travel to us. Pulsars (marked by sun symbols) lie in the galaxy, interior to the halo; their signals are affected only by the Milky Way's interstellar matter. Fast radio bursts (marked by lightning symbol) lie in other galaxies; their signals travel through multiple different regions. [Platts et al. 2020]

https://aasnova.org/2021/05/21/what-fast-radio-bursts-tell-us-about-galaxy-halos/

2021 Observation/ Feed Schedule

- May June 2021 Down to fix pointing system
- July 2021
 - 1420 MHZ Feed for pulsar, FRB, and HI observations
 - 1296 MHz if EME team wants it

Questions?