EME (Earth Moon Earth) Moon Bounce Communicating on the weekend of November 20 & 21, 2021

By Gary Agranat (WA2JQZ)

This past weekend our radio telescope group DSES successfully operated EME (Earth Moon Earth) Moon bounce communications again. EME Moon bounce is transmitting and directing signals to reflect off of the Moon, about 240,000 miles away in space, and communicate with anyone else on Earth who has the Moon visible above their horizon and who has similarly capable equipment. As we did last year, we participated in the ARRL annual EME contest. We used our restored 60-foot dish antenna, operating at 1296 MHz, with our call sign K0PRT. This turned out to be our smoothest and most successful EME operation to date.

We can only communicate sending signals off of the Moon when the Moon is above our horizon. For this past weekend the Moon was just past full, which means the Moon rose just after sunset, and set shortly after sunrise. That means we could only operate during the night time — all-nighter operations.

Ray Uberecken (AA0L) and Gary Agranat (WA2JQZ) were the primary team on the site operating for the full weekend. Marc Stover was on site all of Friday night, taking time-lapse night photography of the dish antenna as it tracked the Moon, with the starry sky moving as the Earth rotated. Our science lead Dan Layne (AD0CY) was on site on Saturday afternoon and evening. He particularly helped us properly configure our digital mode, and he succeeded in making Q65 digital contacts to South American and Europe. Both Marc and Dan also got some experience calling CQ on SSB voice, and they heard their voice signals traveling at the speed of light reflected back about 2 seconds later.

Our set up overnight Friday. We used an ICOM transceiver transmitting 150 Watts. A Morse Code keyer was attached, set to 15 words per minute (WPM). The keyer device was also able to send code by typing characters on the keyboard, but we kept to sending the standard way. This is my preference (Gary), yet this also enables flexibility to adjust one’s sending as one hears the conditions. We also used the microphone for SSB voice. On Saturday night, in addition, we tried the Q65 digital mode, using the Signalink box to the right of the transceiver, connected to a laptop. Another laptop to the left of the keyboard kept our contact log digitally. It was also set up with a WSJT 10 program, to display to us the needed Doppler shift between our transmit and receive frequencies, to correct for the difference in speed between our site and the Moon. When we transmitted, we monitored the green oscilloscope and power supply on the rack at left, to verify we in fact were sending out a signal to the antenna.

This was our most successful weekend EME Moon bounce operation to date. We made 19 contacts the first night, and 26 contacts the second. (In comparison, last year for the first weekend of the contest we made about 25 contacts, and we operated then for just one night.) Just about all of our equipment worked perfectly and smoothly. 42 of our contacts were by using Morse Code. Dan made our two Q65 digital mode contacts: to IK7EZN in Italy and CX2SC in Uruguay (our only South American contact). Our other contact was using SSB voice (with DL6SH in Germany). EME voice communications requires better equipment capability and often also more power, so making EME voice contacts is generally rarer.

Almost all of our contacts were done between Moonrise and about 1 AM local time, on each of the two nights. We had a moon path to Europe until about that time. By then Ray and I (Gary) were feeling tired enough, and the European signals were becoming sparse. We were aware that in another hour or so Japan should have moonrise and give us a communications path to us. But we decided getting some sleep was more important, and we chose to sleep. We woke again around sunrise and went back on the air, with the Moon then to the west over the Pacific Ocean. On Saturday that enabled us to work DU3T in the Philippines, and VA7MM in British Columbia, Canada. We heard DU3T work an Australian station, but we didn’t hear the Australian station ourselves. We tried calling CQ ourselves, but didn’t hear anyone else. On Sunday morning we didn’t succeed in contacting anyone — we suspected we might not find anyone by then, but we believed the try was still worth it. (By comparison, last year once the Moon gave us a path across the Pacific, we were able to work 2 stations in Japan and one in Australia.)

On our second night we made contact with our DSES member VE6BGT Skip Macaulay in Alberta, Canada.

With our 60-foot antenna we are probably one of the stronger and more capable stations on the air. We consistently got strong signal reports from other stations. I typically got RST reports of 579. Most of the stations I gave signal reports to had much lower values, from 219 to 569. We were outputting about 150 Watts.

As an indication of our good signal, on Saturday night I had a run of 18 Morse Code (CW) contacts in a row, in a period of about an hour and a half. That is, after I completed one contact, I heard someone else trying to contact me, and I then continued with them. This kept happening for 18 contacts straight. In ham radio terminology this is called a “pile up”. This is fun and uplifting when it happens. But it also takes endurance and energy and patience.

Often the signals we heard were extremely weak. And so there is definitely some skill to bring to bear.  Depending on conditions, I may need to repeat key parts of the message many times. For Morse Code CW I may need to adjust the speed of my sending to a rate and pattern that I think the other person can copy. By choosing how I send, I indicate to the other person how I am hearing him or her, and that person can then adjust to my conditions too. It helps to be mindful too, so that one doesn’t make the other person feel intimidated. We are trying to make successful contacts, we also are part of a community.

Of our total 45 contacts, 28 (the majority) were with Europe. Those were with Germany (DG5CST, DL6SH, DL7UDA, DF3RU, and DL0SHF), Poland (SP6JLW, SP7DCS, SP9VFD, SP6ITF, and SP3XBO), Sweden (SK0CT, SM5DGX, SM6FHZ, SM7FWZ, and SM4IVE), Czech Republic (OK1KKD, OK1CA, OK1CS, and OK2DL), Italy (IK2DDR, IK3COJ, and IK7EZN), France (F5KUG and F6KRK), England (G4CCH and G3LTF), Finland (OH2DG), and European Russia (RA3EC). 12 contacts were with the continental US: WA9FWD (WI), N8CQ (NC), NQ7B twice (AZ), WK9P (IN), N5BF (CA), WA6PY (CA), WB8HRW (OH), W2BYP(NY), K2UYH (NJ), K3WM (PA), and W6YX (Stanford University, CA), plus one with Alaska (KL6M). 2 were with Canada: VE6BGT (AB), and VA7MM (BC). Plus we had the digital contact with Uruguay CX2SC. And DU3T in the Philippines.

***

I’ll mention, during the daylight hours on Saturday, while we had some quiet time in between Moon passes, Ray and I each spent some time with other activities. Ray did some autumn cleaning of the operations trailer. That included reorganizing the rack equipment, to make it easier for our current needs, and removing cables not in use. Ray also switched our cable for receiving GPS to an antenna on the roof, from the portable antenna we had been using inside.

Meanwhile I went to operate our HF (High Frequency) ham radio station at the bunker. I had not been on site for over a year. I wanted to check that our HF equipment and antennas were still functioning Okay. Starting around 1 PM local time I made some casual SSB contacts with our multiband vertical antenna and our directional 3-element Yagi antenna on the 50-foot tower, on the 20 and 15 meter bands. Most of those contacts were Parks on the Air stations around the country. I contacted NB6GC as well, the USS Hornet Museum ship in Alameda, CA (Bay Area) for a special event commemorating the splashdown of Apollo 12. The operator there noticed our callsign for DSES, and he told me he would be operating EME that evening too, though I think on a lower frequency. I also tried going on the 40 meter band with the vertical, but I mostly heard regular weekend nets, and I didn’t want to interfere with those. Starting at 2 PM local I then operated on the ARRL November Sweepstakes SSB contest. I chose to stay mostly on the 15 meter band with the Yagi, as 15 meters seemed more relaxed than 20 meters, and we had good propagation to the US northeast. I also swung the antenna around to contact stations I heard in California and Washington State. I sometimes searched around the band, I sometimes held a frequency and called CQ. Later I did try 20 meters too. In all I made 57 contacts, to 32 of the 84 ARRL sections in the US and Canada. Besides getting on the air and testing our equipment, I was interested to have our club station with our callsign participate with the rest of the ham community, so that other hams get to know us and to feel us as part of their community. I operated on HF for about 2 hours, though not all at once.

The one maintenance issue I had for the HF station is that the Yagi antenna direction was offset from the indication on the rotator control by about 80 degrees. I compensated for this while I operated. I remember that when we last had the tower lowered for maintenance over a year ago, the rotator didn’t seem able to lock.

***

As I mentioned, this was our most successful EME event to date, with 45 contacts and with no major equipment problems to troubleshoot. The automatic tracking system worked flawlessly, allowing us to concentrate on the signals we heard and making contacts.

This past weekend’s operation was the first of two parts of the ARRL EME contest in which one can use 1296 MHz. We plan to operate for the second part too, which will be on the weekend of December 18 & 19, 2021. Several more of our members, and at least one local ham, plan to come for that.

***

EME has been a major strategic goal of DSES since we started restoration of our 60-foot antenna in 2009. An immense amount of work was done in our group to achieve the capability we have now. The most visible aspect now is in making the operation work, and in developing our experiences to make the operation work well. Yet behind the scenes there have been many people, and much work in many more aspects — for example, the infrastructure repair and modernizing, restoring full electric power, developing from scratch the automatic tracking, to name just a few. To my mind this is a lot like having our own Moon mission.

And at the same time we’ve been developing our science capability and doing science too.

To me as well, hearing one’s signal come back 2 seconds later at the speed of light from the Moon and communicating with others around the world this way still takes my breath away. I really am doing something physical with the Moon, a celestial object out there in space, and the Moon physically responds back. To me the Moon is no longer something in the sky I just see, it is a physical object in space I have touched in some way and it has responded. And the speed of light and the wave-nature of light are no longer something just theoretical — I have to deal with those practically. I think something has changed and grown, for each one of us in DSES who have had the opportunity to work with EME.

Our 60-foot dish antenna in stowed position and the operations trailer, during the daytime break Saturday, before the Moon rose again after sunset. The antenna focus has installed a 1296 MHz dual polarized feed.
The power lines on Delores Lane that provide our site with electricity.
Our high frequency (HF) ham radio antennas on the site. On Saturday afternoon while we waited for the Moon to rise again, I operated for a couple of hours for an ARRL HF contest: the November SSB Sweepstakes. I used the directional Yagi antenna on the tower and a multi-band vertical antenna at left. For the Sweepstakes contest I made 57 contacts around the continental US and Canada, plus with Hawaii and Puerto Rico. Before that I also made some casual contacts, mostly with hams who set up at parks in various parts of the country.
After about 1 AM each night we took a break and got some sleep. When we woke a few hours later, the Moon was still above the horizon and we operated Moon bounce for a little while longer. On Saturday morning that gave us contacts with DU3T in the Philippines and VA7MM in British Columbia, Canada. This photo is on Sunday morning as we repointed the antenna to the Moon, near the horizon above my car. On Sunday morning we made no further contacts, but if anyone else was there on the air we would have heard them.
The two wire antennas in the foreground are phased dipoles, which we use for receiving natural signals from Jupiter and its moon Io, caused by Io moving through Jupiter’s strong magnetic field. The 12-foot dish antenna is a new project that will be part of a radio astronomy interferometer we are developing.
Closer view of one of our dishes we will use for radio astronomy interferometry.
Our operating station early Sunday morning. We had coffee and muffins ready.
You can see the antenna tracking software displays. The Moon is shown on an astronomical sky map. The circle around the Moon represents the beam width of our signal. Other windows on the display indicate the coordinates the antenna is pointing to, its motion, and settings for how we are controlling it. On my laptop on the far right, I have a logging program (not shown) and a program that shows me the position of the Moon (in Az & El and RA & Declination), and the Doppler shift corrections we need to continually make as our relative motion between our location and the Moon changes.
The ICOM transceiver we were using, tuned to 1296 MHz, and the Morse Code keyer for sending code. We had the keyer set for 15 words per minute. I wrote down (copied) the code that I heard on the paper pad. I save the hard-copy record, in case I need to double check a call sign or a contact detail for the contest or QSL request.
The farm and ranch fields across the road from our site.

ARRL 2020 EME Contest Results

Reported by Gary Agranat WA2JQZ.

DSES participated in the ARRL Earth-Moon-Earth (EME) moon bounce contest last autumn. The contest was spread over 3 weekends. We participated in the weekend segments of October 10-11 and November 28-29. The ARRL has now posted the contest results.

We operated solely the 23 cm (1296 MHz band) with our 60-foot dish antenna. We used CW Morse Code and SSB Phone on the first weekend, and CW and Digital JT65 on the second weekend. We made 50 contacts over the two weekends. However, for contest scoring, stations we contact again over both weekends only count once. Therefore for scoring, we were credited with 36 contacts. Our team consisted of several operators: AA0L, KL7YY, WA2JQZ, and KC0HPN. Glen Davis also was crucial for adjusting our antenna pointing system and ensuring we were operational. (WD0CUJ and Michael Namieka also came out, and made a moon bounce test transmission, but didn’t make contest contacts.) And so we submitted our contest log in the All Mode, Multioperator, 1.2 GHz category, with our call sign K0PRT. Worldwide we came in 4th place in this category.

ARRL posted the results on this PDF file. EME-2020-FinalQSTResults.pdf (arrl.org). They also have an interactive page, Contest Scores (arrl.org).

In addition, we were contacted last month by Rick Rosen, K1DS. He wrote an article for QST about the 2020 ARRL EME contest, and he included dedicated segment of the article just for DSES. The article is here: 2020 EME Contest – Final Results – Version 1.1 (arrl.org)

Our posts about our participation in the contest:

Our 1st DSES Earth-Moon-Earth (EME) Moon Bounce Communications – Deep Space Exploration Society

DSES Succeeds in our 2nd EME Moonbounce Communications Competition – Deep Space Exploration Society

DSES Succeeds in our 2nd EME Moonbounce Communications Competition

Text and photos by Gary Agranat.

On the weekend following this past Thanksgiving we participated in the second round of the ARRL EME Contest, which ran for 48 hours, on November 28 & 29, 2020, GMT hours. This time it was a cliff-hanger in that we almost didn’t get on the air. But with some dedicated effort we succeeded again. This time we contacted some new places. And we added JT65C digital mode.

Team members for this operation were Ray Uberecken AA0L, Gary Agranat WA2JQZ, Myron Babcock KL7YY, and Bill Miller KC0FHN. Floyd Glick WD0CUJ came out also for one evening, accompanied by our new member Michael Nameika.

For this weekend the Moon was at almost full phase. That meant that it would be up mostly during our nighttime, which therefore was when we would have to do our operations. The contest would start at 0000 Hours GMT, which for us was 5 PM on Friday evening November 27. The Moon was already rising at 3:19 PM, so it would be up high enough to begin operating right away, once the contest started.

The Moon above our horizon already at about 4 PM Friday.

Ray and Bill arrived Friday afternoon by 3 PM to set up and do last minute testing. I (Gary) arrived soon after.

In our testing, we found we could receive the 1296 MHz beacon Ray set up at his home in Peyton. But we couldn’t properly transmit.

We quickly slew the antenna to the service tower, and Ray retrieved the amplifier at the feed. The thinking was the problem might be there.

The 60 foot dish antenna lowered to the service tower, as the sun set.
Ray climbed the service tower and retrieved the amplifier at the feed.
Ray retrieving the amplifier.

Ray did some quick testing of the amplifier. But an initial check didn’t find anything wrong.

Ray quickly tested the amplifier in the operations trailer, but didn’t find a problem. Outside, the Moon was rising, and the contest was starting. But were were not operational.

Ray then climbed back up the tower to return the amplifier to the feed point. We thought about what else could be wrong.

We then checked how much power was being drawn by the amplifier in the pedestal. The power meter was reading about 30 Watts when we tried to transmit, when it should have been reading about 200 Watts. At that point the sky was getting dark. It would not have been safe to do any more climbing. And so for the first night of the contest we couldn’t operate.

Bill returned home, but was available the next day for coordination in Colorado Springs. Ray and I spent overnight at the site, to continue troubleshooting on Saturday. We would have the whole day in sunlight, until the Moon rose for the second pass at 3:47 PM.

Ray replacing the amplifier at the feed, as the sun set.

Pikes Peak was visible on the northwest horizon, as the sun set.
The frost on Gary’s car the next morning.
The bunker Saturday morning.

Before going to sleep I (Gary) made some HF ham radio contacts. So we got on the air still, but on HF. This weekend there was also another contest, the CQ World Wide CW (Morse Code) Contest. On 160 and 80 meters I made three contacts with Canadian stations. There were lots of US stations on, but for the rules of this contest, you have to contact stations outside of your country (or more precisely outside of your DX area, which for us is the CONUS). I afterwards made some HF FT8 digital contacts for the club, on 80 and 40 meters. On 40 meters we made our first DX contact with New Caledonia in the southwest Pacific, with station FK8HM. This was with our recently repaired vertical antenna, so this showed our vertical was working OK.

Early the next morning I made some more CW contacts for the contest, this time on 40 meters using the vertical, and on 15 meters, using both the vertical and Yagi antennas. On 40 meters, while it was still dark across the Pacific, stations in China, Hong Kong, and South Korea were heard, but I didn’t succeed in making contacts. I did succeed though in contacting two Japanese stations. Then on 15 meters, with daylight across the Atlantic, the band was wide open to Europe. For a few minutes while on the air, we made contacts with France, Spain, and Slovenia, and also one contact to the south with Brazil.

Earlier during the year, the 3-band Yagi antenna bank angle slightly tilted. The 5-band vertical antenna also was damaged, probably both from storms. Earlier in the fall we repaired a bent piece of the vertical antenna, and reconnected the radial wires that had been severed. The HF operating showed these were at least working OK again. The 160 and 80 meter contacts were made with dedicated diploe antennas, also lightly visible in the picture. The Yagi antenna on the tower is aimed towards the northeast, towards Europe.
This is an eQSL confirmation we received from VE7JH in British Columbia, Canada, for our 80 meter Morse Code (CW) contact on Friday night. The card came with this caption information: 08 Aug 2009 Frobisher Bay, Baffin Island HMCS Toronto navigates an iceberg HMCS Toronto navigates past an iceberg near Frobisher Bay off the coast of Baffin Island while conducting sovereignty patrols as part of Operation NANOOK 09. Operation NANOOK 09 is a Canada Command sovereignty operation conducted with the participation of personnel, ships and aircraft from the Navy, Army and Air Force, working under the command of Joint Task Force (North) (JTFN). The operation runs from 06 to 28 August 2009, in Canada’s eastern Arctic. Photo by: Corporal Dany Veillette, Canadian Forces Joint Imagery Centre, Ottawa, Ontario.
An eQSL confirmation we received from F6HKA in France, for a Morse Code (CW contact) Saturday morning on the 15 meter band. His card shows several Morse Code keys.

Ray and I had breakfast and resumed troubleshooting work at 9 AM. We retrieved the amplifier again, and this time did a much more thorough test. Ray found one diode was leaking current. But this was a circuit safety issue and not a showstopper for transmitting. Ray replaced the diode, and returned the amplifier to the feed.

Ray retrieved the amplifier again Saturday morning.
Ray doing a thorough test of the amplifier. Nominally it should boost our signal to about 200 Watts at the feed.
Ray tested the output of the amplifier by sending the signal through the disc cone antenna on top of the operations trailer.

We then considered what else could cause our problem. Ray tested the conductivity of our feed lines. We have two coax cables running from the operations trailer to the feed. Ray climbed to the feed, and connected the two cables there. Then we measured the conductivity going out and coming back, together at the same time. His software analyzer showed Coax cable #1 had a fault at 135 feet down the line, and Coax cable #2 had a fault 185 feet down the line. This corresponded with where there are swivel joints for the cables, where the fixed pedestal interfaces with the moving dish antenna structure. A signal test also showed there was more loss on the lines then expected.

The oscilloscope showed we didn’t have as strong as signal as we expected along the feed lines.

At first Ray wondered that the swivel joints might be the problem. However, on visual inspection those were seen to be OK. The problem was eventually traced instead to the weight of the cables at that location pulling on the centers of the feeds, causing those to slip out. 

Ray was able to repair Feed Line #1.  We then did more testing, with Ray’s beacon and the W0TTT beacon in Como, CO, and with an SSB tropospheric scatter contact with Myron in the Springs, and found we were working well. We were back in business.

Saturday, troubleshooting. The disc cone antenna is on the short tower on the left side of the trailer.

Myron drove out to the site, and operated with us the second night. While Myron was on his way, I slew the antenna for Moonrise, getting more practice with the System 1 automatic tracking.

As soon as the Moon rose we heard CW and digital signals. We again had to figure out the Doppler shift correction, using the WSJT 10 software. At the start we made several CW contacts with Europe: to Germany, England, Croatia, France, Poland, and Austria.

Eventually we also tried digital JT65C –for the first time. That was a learning curve, but we finally got it. One of the tricks for that was that the waterfall window on the JT65C has a bar at top designating where the sync pulse of the signal has to be, in order for the software to decode it. Another challenge was that operators were heard with JT65 weren’t using a consistent contact exchange format. And so I had to manually edit the exchange fields quickly, in the 10 seconds between decoding and transmitting.

We made 19 contacts altogether. 16 were with CW (Morse Code) and 3 were digital JT65C. Myron tried several times to make SSB contacts. But there were no takers to respond back to us.

Over the night, I generally made the CW and digital contacts, while Ray operated the radio, including keeping up with the Doppler shift offsets. I offered to let others make contacts too. But we were comfortable doing it this way.

Floyd came during the evening with his astronomy student Michael Namieka. Floyd showed Michael around the site, and I believe also made some HF contacts in the bunker. They watched our EME operation. They got into a good technical discussion about the component causes of the Doppler shifts. Myron had Michael send a voice CQ and test moon bounce signal, and Michael heard his voice come back about 2 seconds later.

Our CW contacts included our DSES member Skip, VE6BGT — he said we sounded much stronger this time. And we found several other stations we had contacted last month too. 

On JT65 we had QSOs with AL Katz K2UYH, W6YX Stanford University, and AA4MD in Florida (who last month we got on CW). 

New countries to Europe this time were France and Croatia. We got KL6M in Alaska, who built our feed. We got one Japanese contact JH1KRC, who we contacted last month. And this time we had one contact with Australia, VK5MC, probably our contact furthest away from us.  I am happy to report we had pileups on us.  At least some of our contacts already knew something about us and our capability.

This is a record of our contacts, from the Cabrillo formatted file we submitted to the ARRL for the contest. CW is Morse Code. DG is JT65C digital. 1.2 G is the 1.2 GHz frequency band. You see the date and times in GMT, our station with the signal report we sent, and the station we contacted with their signal report to us.
QSO: 1.2G CW 2020-11-28 2312 K0PRT 599 DG5CST 599 Germany
QSO: 1.2G CW 2020-11-28 2317 K0PRT 559 SP7DCS 589 Poland
QSO: 1.2G CW 2020-11-28 2324 K0PRT 559 G4CCH 599 England
QSO: 1.2G CW 2020-11-29 0007 K0PRT 559 9A5AA 579 Croatia
QSO: 1.2G CW 2020-11-29 0020 K0PRT 569 DL6SH 579 Germany
QSO: 1.2G CW 2020-11-29 0040 K0PRT 569 VE6BGT 589 Canada
QSO: 1.2G CW 2020-11-29 0057 K0PRT 579 OE5JFL 579 Austria
QSO: 1.2G CW 2020-11-29 0216 K0PRT 569 WA9FWD 579 Wisconsin, USA
QSO: 1.2G CW 2020-11-29 0350 K0PRT 559 F2CT 569 France
QSO: 1.2G CW 2020-11-29 0403 K0PRT 559 KL6M 579 Anchorage, Alaska, USA
QSO: 1.2G CW 2020-11-29 0407 K0PRT 559 OK1KIR 569 Czech Republic
QSO: 1.2G CW 2020-11-29 0413 K0PRT 559 I5MPK 599 Italy
QSO: 1.2G CW 2020-11-29 0420 K0PRT 559 K7CA 559 Nevada, USA
QSO: 1.2G CW 2020-11-29 0430 K0PRT 549 KA1GT 559 Maine, USA
QSO: 1.2G DG 2020-11-29 0629 K0PRT -06 K2UYH -01 New Jersey, USA
QSO: 1.2G CW 2020-11-29 0750 K0PRT 569 JH1KRC 589 Japan
QSO: 1.2G DG 2020-11-29 0811 K0PRT -08 W6YX -08 California, USA
QSO: 1.2G CW 2020-11-29 0920 K0PRT 439 VK5MC 449 Australia
QSO: 1.2G CW 2020-11-29 0946 K0PRT 599 N4PZ 599 Chicago, Illinois, USA
QSO: 1.2G DG 2020-11-29 1006 K0PRT -09 AA4MD -07 Florida, USA

The automatic tracking system display, showing us tracking the Moon.
The WSJT JT65 display on my computer. The upper left shows a spectrum waterfall, where we had to position the signal for the software to decode. We also at times had to adjust the audio gain, to not overwhelm the display. The upper right shows the message exchange, in this case with W6YX in California. The lower window is our logbook.

We decided to stop operating at around 3:30 AM Sunday morning. We were hearing much fewer new contacts. But also the outside wind was picking up immensely. Forecasts for the region were for gusts up to 50 knots. We stowed the antenna back to the safe position. Ray, Myron and I then got sleep in the operations trailer. Outside the temperature dropped to the low 20s, but we kept warm inside with the heaters. Myron left early in the morning. Ray and I closed the site by 11 AM Sunday, and headed back to the Springs.

* * *

Some technical feedback: System 1 was working almost perfectly.  The one glitch again was that there was a discontinuity in elevation reading on Friday night as the elevation was brought close to zero (seen by Bill).  I didn’t experience that on Saturday or Sunday.  Otherwise, the System 1 is an immense help.  It makes the slewing and tracking easy and seamless.  

We had a learning curve figuring out all of the nuances and details (or the sufficient and necessary details) for running JT65.  We did eventually get JT65 working well. You do need to pay attention to its peculiarities.  It probably could use some guidance documents, like we have for System 1. 

I will note I did try to make a number of contacts but didn’t get responses. I don’t know why that was.  I am suspecting part of the reason might be due to not getting the Doppler shift offsets quite right at times. But we did get a number of good signal reports and explicit comments that we had good signals.

Later I did some research. One of our contacts KA1GT has some articles on the Doppler shift math and corrections. These might be helpful:

Bob Atkins – KA1GT – EME Doppler shift 101

CFOM Constant Frequency On Moon Doppler Mode – Bob Atkins – KA1GT

It was a somewhat intense weekend for the team — with not being able to operate Friday evening as it got dark, with the troubleshooting, the cold and windy weather conditions and staying overnight (for some for 2 nights) on site.  But we were very pleased we got our Moon communications back.  We had lots of good signal reports.   We apparently were doing better than in October with our signals. We probably had fewer contacts than last time as we were spending time figuring out the JT65 and Signallink.  And I suspect there might have been fewer hams on for the second night. But I think also we didn’t want to knock ourselves out, especially with all the work we did. We found a good balance that worked.

I think all of us involved were very pleased with what we accomplished this weekend. We spent the effort to troubleshoot, we got ourselves back on the air, and we made a successful second EME Moon bounce operation.

  • 73 Gary WA2JQZ

DSES Science Meeting Nov 23, 2020

Welcome to the DSES Science meeting 11/23/2020

2020-11-23 DSES Science Meeting Notes, by Bill Miller

We had 16 participants in the virtual science meeting today:  Thanks everyone for joining.

Participants: Dr. Rich Russel,  Ray Uberecken, Lewis Putman, Bob Haggart, Don Latham, Floyd Glick, Gary Agranat, Glenn Davis, Jay Wilson, Jon Ayers, Lauren Libby, Myron Babcock, Robert Sayers, Ted Cline. Jerry Espada, Bill Miller

Agenda and notes;

Also see the Zoom Video Recording for more detail:

https://us02web.zoom.us/rec/share/3mwT_OSBrUV6KMi8GTTrcFaiG77Jmuuke72Jk1zmmUDpSrO2nAY3jFx49_muRz5I.7GK8PFSy5Vs-kL4R?startTime=1606177717000

Agenda and notes:

  1. Myron’s Treasure’s Report Checking $1774.28. Savings $5742.15. We have 49 paid members.
  2. Science Fair: 
    • Bill spoke with Carol Bach the coordinator,  she replied, “The Pikes Peak Regional Science and Engineering Fair will be held virtually on February 20, 2021.  We are hoping that the Deep Space Exploration Society will again sponsor a special award or awards at the fair.  In addition, we are hoping you or another member of your group will consider being a special awards judge.  We will send you a code to unlock a showcase with digital displays that you can view.  Virtual judging will take place between February 18-20, 2021.”
    • Bill to send board DSES Special awards criteria for approval.
    • “Please respond by December 2, 2020 to this email and confirm that your organization is planning to participate. Also, please let us know the name and contact email for future communications.”
  3. Planet Walk:
    • Bill will write an endorsement letter and have the DSES Board modify and approve for Planet Walk Colorado Springs. See https://www.planetwalkcs.org/
  4. Arecibo Failure:
    • See Bob Haggard’s repost on the Arecibo Radio Telescope status.
  5. Rich presented the DSES Science part of the Meeting:  See all notes in the DSES Science Meeting Power Point. http://dses.science/wp-content/uploads/2020/11/DSES-Science-Meeting-11-23-20.pdf
  6. Ray
    • Problem with the 1296 feed last trip.  Took down the Feed amplifier and found that the unit was stuck in the transmit configuration again due to a failed FET in the Relay driver.  Fixed this and added more gate protection circuitry to solve the problem. 
    • Also had a bad diode and a bad cable that had to be corrected.
    • The FT-736R Keyer connection failed on last trip but Ray fixed it.
    • Tried CW EME but couldn’t hear the echo.
    • Did receive Rays Home Based beacon bounced off Pikes Peak and verified pointing so the receiver chain is working.
  7. Gary Underground K0PRT  bunker station summary report.
    • FT8,  PSK Reporter website showed our station was received on 40 meters during afternoon in CA and TX.
    • 15M operation was hot
    • Our rare grid square (DM88) attracted many Japanese stations
    • Vertical working well on 15 and 40 meters. 10 meters was tried and at least had good SWR, but band was dead.
    • Yagi was also working well to Japan
    • PSK reporter showed good coverage on 15 meters all around the Pacific Rim.
    • See more in Rich’s slides above
  8. Glenn says that Phil is working on an elevation tracking update that will need some onsite testing when ready.
  9. Much discussion about the SDR receivers, GNU SW and the computer power needed to run them.  See the meeting recording for too much detail to capture here.

Our 1st DSES Earth-Moon-Earth (EME) Moon Bounce Communications

By Gary Agranat, with Myron Babcock and Glenn Davis. Videos by Bill Miller.

Friday evening at sunset as the team prepares for our first EME attempt overnight. Photo by Gary Agranat.

On Saturday October 10, 2020 we succeeded in making our first Earth-Moon-Earth (EME) Moon Bounce communications. We succeeded at our first attempt. This accomplishment was several years in the making, thanks to the work of many members, past and present.

We did this participating in the annual ARRL EME contest held on the weekend of October 10-11, 2020 GMT. (That’s Friday 6 pm to Sunday 6 pm local time.) The frequencies available for this contest were in the ham radio bands from 50 to 1296 MHz. We used our 60-foot dish antenna at Haswell, CO, with a 1296 MHz feed with dual circular polarization, installed 2 weekends earlier.

[ Installing the 1296 MHz feed for Autumn Moon Bounce Communications, Sept 27 ]

EME Moon Bounce communications is directing a signal to the Moon. The Moon’s surface simply reflects the signal back to Earth. If the Moon is above your horizon, if you have suitable equipment, and if you know enough about what to do, it would be possible for you to receive the signal and communicate back. You could communicate to your neighbor or across continents. The signals, however, are extremely weak, having to travel back and forth the Earth-Moon distance, over 238,000 miles. EME generally requires efficient directional antennas to sufficiently increase the signal gain. Amplifiers can be used too. And the antennas have to point to the Moon. Also, radio signals sent through the ionosphere experience a rotation in their polarization. And there is some effective rotation from other causes, including from the changes in orientation from the Moon and from operating on different points of the Earth’s globe. Our solution is to circularly polarize our signals. And also, there is a Doppler shift between transmitted and received signal, mostly due to the Earth’s rotation, causing a difference in velocity between the Moon and our location on Earth. All of these are challenges to deal with.

Our 60-foot dish antenna at sunset as we started preparations. Photo by Glenn Davis.

Our team for the EME operation were Ray Uberecken AA0L, Myron Babcock KL7YY, Gary Agranat WA2JQZ, and Glenn Davis. Bill Miller KC0FHN also came on Saturday morning.

The team arrived Friday evening October 9, while we still had daylight, to set up and test. Testing included making pre-arranged tropospheric scatter contacts, which were successful. We also attempted to complete set-up of a Hughes Internet antenna, to give us Internet access, but that was not successful. We instead sometimes connected to the Internet using cellphones. Although the contest began at 6 PM local time, we had to wait for the moon to rise above the horizon. Moonrise for us was at about 11:30 PM local time, and the Moon was above our horizon until about 2 PM local time the next day Saturday. We chose to stay for just this one Moon pass, and not continue through Sunday, in order to not knock ourselves out on this first attempt.

After we completed our testing, we relaxed until we were ready to start. Looking outside, we had an exceptionally deep starry sky. We could see the Milky Way clearly arching overhead through Cygnus. Jupiter and Saturn were bright to the south, and Mars was very bright, rising in the east. Glenn Davis experimented with his camera and took some nice time exposure photos with the dish antenna, the stars, and the Milky Way.

Photo by Glenn Davis. (Click to enlarge.)
Our 60-foot dish antenna with the Milky Way. Jupiter and Saturn are brightly visible to the left of the antenna. Photo by Glenn Davis. (Click to enlarge.)

I (Gary) meanwhile got some rest. This enabled the others to get some rest later in the morning while I continued.

Myron KL7YY wrote and emailed an update about our operations to the DSES membership on Saturday morning at around 4 AM. It provides a good narrative of how we were doing until that point, and his update follows next:

* * * * * * * * * * *

Summary of DSES first attempt at EME, Earth Moon Earth, contacts using the 60 foot dish:

On Friday evening, October 9 we started with a few nearby Tropospheric Scatter contacts around 7 PM with DSES member KL7IZW, Steve in Monument, CO, and W6OAL Dave in Parker.  Around 9 PM we talked to N0YK in Scott City KS, These contacts ranged from 110 to 130 miles and confirmed that our system was working.

 When the moon came over the horizon at midnight we tried to listen to the ON0EME moon beacon in Belgium but couldn’t hear it.  About 45 minutes after moon rise we started to hear JT-65 digital signals. 10-15 minutes we started to hear CW signals.  Glenn Davis made a few corrections to the tracking program and signals increased in strength.  At times it sounded like a 20 meter CW contest pileup with all the loud signals bouncing off the moon all across 100 KHz of band (1296.0 to 1296.1 MHz).  After about 90 minutes without hearing our own signal we rechecked the power to the amplifier at the feed horn and everything appeared to be normal.  A few moments later we finally heard our own signal 2.5 seconds later on CW off the moon and the Belgium Moon Beacon.  I made several calls on SSB and heard our echo really loud.  We went back to CW and Gary proceeded to start making CW contacts. The first almost contact, a German station, abruptly dropped out so no official contact was completed.  Our first official station worked on CW was with OH2DG in Finland.  England was next followed by Italy, Poland, Denmark, Sweden and with DSES member Skip Macaulay, VE6BGT, in Alberta Canada.. Also made our first voice SSB contact with him as well.  Seems that with every new contact we make it is with a new European country.  In order to correct for Doppler shift and with no RIT we are changing VFO’s from Receive to Transmit by several KHz or more.  Lots of CW signals being heard and we still have 12 more hours of moon to bounce signals off of… We are hearing our own echo and we have lots of hours to go. We plan on Digital mode later in the day but for now there are more than enough signals to hear on CW. 

Our Moon bounce station consist of an older Yaesu FT-736R with 10 watts feeding almost 180 feet of half inch hardline into a 200 watt amplifier at the antenna feed horn.  The receiver pre amplifier is a 30+db gain with a noise figure of minus .35.  Our Effective Radiated Power (ERP) is over 6 million watts. 

* * * * * * * * * * *

We operated with our club call sign K0PRT.

A short video of Myron KL7YY calling CQ. You can hear the echo of his signal coming back from the Moon a couple of seconds later. (Video length 35 seconds)

K0PRT-2020-10-10%2010.24.25.mp4

Because the signals are extremely weak, and there can be fading, there is a standard protocol for exchanging messages for EME contacts. This is intended to ensure as much of the message as possible can be copied and acknowledged on both sides. The basic format is simple, and one repeats a lot. One first exchanges call signs, then the signal reports, and then finally if that worked, an acknowledgement all that was copied correctly. If one only completes part of the contact, one should still log that, as that is an accomplishment. If using Morse Code, the standard is to send at 15 words per minute, but spacing out the characters longer than usual. The faster sending and spacing is to help one copy complete characters if there is fading. If one misses a character, one still has a high chance to get the character with the many repeats.

In order to have the proper frequency offset for the Doppler shift, we referenced the WSJT 10.0 software, at the suggestion of Steve KL7IZW. The software has an astronomical data section that calculates and displays the frequency offset. The higher the frequency, the more significant the offset. At 1296 MHz we had a difference of as much as 3 KHz between transmit and receive frequencies. The software also displays other useful data like local Moon rise and set times (based on Grid Square location).

The WSJT 10.0 software also can be used for JT65C digital EME communication. However, we didn’t figure out how to configure that in time with our setup, and so we didn’t do any digital contacts this time. We could tell we were hearing JT65 signals. They were present from 1296.05 to 1296.1 MHz, and we almost always could hear those signals while the Moon was up.

Glenn stayed up until about 3 AM, when we were sure our antenna azimuth alignment was correct and would continue to point accurately to the Moon. His work was invaluable in troubleshooting the azimuth offset, which turned out to be about 1.5 degrees, and honing in on the Moon once we heard CW signals.

Glenn Davis working with the antenna pointing. Photo by Gary Agranat.
The 60-foot antenna pointing east, for the tropospheric scatter test to N0YC in Kansas. Later we would point east again, to prepare for where the Moon would rise. Photo by Gary Agranat.
Myron making a tropospheric scatter SSB phone contact during testing, with Glenn Davis setting the antenna pointing. The scene was similar when me made SSB phone contacts during the EME contest. Photo by Gary Agranat.
Myron, Glenn, and Ray. Ray was looking for the ON0EME beacon after the Moon rose. Photo by Gary Agranat.

Since the Moon rises in the east, our signal paths at first are to the east. That is to Europe and the North American east coast. As Myron mentions, once we started receiving the signals, we were hearing many European stations, and we were busy. Through the morning we made 14 contacts to Europe, to 8 European countries. We also made the contact to our DSES member Skip Macaulay VE6BGT in Alberta, Canada, on CW and then phone. W4OP in North Carolina, hearing us on SSB, then gave us a call on SSB too.

Ray AAOL brought a CW keyer that can send Morse Code with either a keyer paddle or a keyboard. It can store pre-programmed messages, like a CQ call. I (Gary) decided to use the keyer paddle, as that gave me more flexibility — I could quickly adjust for conditions — and I felt more comfortable as I am used to the key.  Meanwhile, it seemed to me also that some of the CW contacts we made used software to send their messages.  Those didn’t have good spacing between words or call signs.  And that made copying slightly more challenging. A keyboard though can enable any of us to send, even if we don’t have practice sending Morse Code. Most of the contacts we made were with CW Morse Code.

This short video shows part of a Morse Code CW contact by Gary WA2JQZ. XE1XA in Mexico called CQ. We responded by sending our call sign K0PRT several times. Then K (the invitation to respond) several times. When we switch the VFO from the transmit to the receive frequency, you can hear the last part of our signal coming back, reflecting from the Moon, several seconds later. You then here the signal from XE1XA, also coming back reflecting from the Moon. He transmitted back our call sign as K0PRN, instead of K0PRT. We afterwards replied sending our callsign again, only, to give him the correction. That’s why we repeat a lot, and send sections of the message just one at a time. We completed the contact successfully. If you look carefully on the transceiver, you will see we switched about 2 KHz down from the transmit to receive frequency. (Video length 1:16)

K0PRT-2020-10-10%2011.07.09.mp4

At around 6 AM, when the Moon was high enough so that we no longer had a path to Europe, we took a break for breakfast and to rest.

Just before sunrise. Photo by Gary Agranat.
Tracking the Moon during early morning. Photo by Gary Agranat.

In earlier discussions we thought we might have many more contacts across the Pacific and to the North American west coast, when the Moon was sufficiently to the west. But it turned out we had very few contacts that way. We made just two contacts to Japan. Our first was at about 9 AM local time, to JH1KRC. Our second was three hours later to JA6AHB. Instead we made a few more contacts to the US, a few to Canada, and one to Mexico. These other stations we heard were searching around too. That led me to believe that if there were any other signals out there, we likely would have heard them.

Our contacts included: 

  • K2YUH Alan Katz in NJ, who runs the 432 MHz and Above newsletter: http://www.nitehawk.com/rasmit/em70cm.html
  • W5LUA Albert Ward in TX, who some in our group know for EME.  (He at first thought I was Ray, when I contacted him on CW.  Myron then contacted him on SSB.)
  • W6YX, the Stanford University radio club, which was using a 28 foot dish.  We contacted them first on CW.  Then later when Bill was looking to record a phone QSO, which would illustrate the signal delay from the transit time to the Moon and back, W6YX just happened to call CQ on SSB on the frequency we were tuned to.  We then had about a 4 minute QSO on SSB with them, which Bill recorded.

A video of Gary WA2JQZ responding to W6YX at Stanford University and having a 4 minute SSB QSO. (Video length 4:38)

K0PRT-2020-10-10%2012.30.38.mp4

We operated until about noon. We made 30 contacts in all.  25 contacts were CW (Morse Code) and 5 were SSB phone.  4 of the 5 phone contacts were with stations we also had CW QSOs with.

We submitted our contest log to ARRL the next day.

In the judgement of all of us, we had a very good EME operation. We are very pleased it worked so well on the first attempt. We clearly have a capable EME station.

Glenn and his team are continuing to follow up to investigate why we had a 1.5 degree azimuth offset.

It still takes my breath away to hear the echo of our signal coming back from the Moon, a couple of seconds later. The speed of light isn’t just a value in the books, it is something you experience viscerally first hand. It is real. EME is the longest signal path we have for communicating with others. This is fun.

These are the contacts we made. (CW = Morse Code, PH = SSB phone. Given also are the date and GMT times, the signal reports, and the other stations and their locations):

CW 10/10/2020 750 K0PRT 559 DL0SHF 559 Germany
CW 10/10/2020 756 K0PRT 559 OH2DG 579 Finland
CW 10/10/2020 805 K0PRT 559 G3LTF 579 England
CW 10/10/2020 814 K0PRT 549 I5MPK 569 Italy
CW 10/10/2020 846 K0PRT 569 SP6JLW 589 Poland
CW 10/10/2020 900 K0PRT 559 DL4DTU 559 Germany
CW 10/10/2020 912 K0PRT 579 SM4IVE 589 Sweden
CW 10/10/2020 919 K0PRT 549 DG5CST 569 Germany
CW 10/10/2020 934 K0PRT 559 VE6BGT 579 Alberta, Canada
PH 10/10/2020 947 K0PRT 57 VE6BGT 56 Alberta, Canada
PH 10/10/2020 947 K0PRT 55 W4OP 57 North Carolina, USA
CW 10/10/2020 1034 K0PRT 549 OK1KKD 569 Czech Republic
CW 10/10/2020 1043 K0PRT 599 OE5JFL 599 Austria
CW 10/10/2020 1049 K0PRT 579 W6YX 589 California, USA
CW 10/10/2020 1103 K0PRT 569 IK2MMB 569 Italy
CW 10/10/2020 1111 K0PRT 579 OZ4MM 599 Denmark
CW 10/10/2020 1149 K0PRT 549 OK1CS 579 Czech Republic
CW 10/10/2020 1153 K0PRT 569 OK2DL 479 Czech Republic
CW 10/10/2020 1201 K0PRT 559 VE6TA 579 Alberta, Canada
CW 10/10/2020 1503 K0PRT 559 JH1KRC 569 Japan
CW 10/10/2020 1526 K0PRT 549 AA4MD 559 Florida, USA
CW 10/10/2020 1533 K0PRT 569 WA9FWD 559 Wisconsin, USA
CW 10/10/2020 1540 K0PRT 569 W5LUA 579 Texas, USA
PH 10/10/2020 1547 K0PRT 569 W5LUA 579 Texas, USA
CW 10/10/2020 1652 K0PRT 539 VA7MM 559 British Columbia, Canada
CW 10/10/2020 1703 K0PRT 559 XE1XA 559 Mexico
PH 10/10/2020 1731 K0PRT 55 VE6TA 55 Alberta, Canada
CW 10/10/2020 1740 K0PRT 569 K2UYH 559 New Jersey, USA
CW 10/10/2020 1806 K0PRT 549 JA6AHB 569 Japan
PH 10/10/2020 1826 K0PRT 54 W6YX 55 California, USA

And these are summaries of our contacts from the logging program:

K0PRT’s Contest Summary Report

 Total Contacts = 30

 Operating Period: 2020/10/10 07:50 – 2020/10/10 18:26

 Total Contacts by State \ Province: AB 4, CA 2, TX 2, BC 1, FL 1, NC 1, NJ 1, WI 1. 8 total.

Total Contacts by Country: USA 8, Canada 5, Czech Republic 3, Federal Republic of Germany 3, Italy 2, Japan, 2, Austria 1, Denmark 1, England 1, Finland 1, Mexico 1, Poland 1, Sweden 1. Total countries 13.

 Total Contacts by Continent: Europe 14, North America 14, Asia 2. Total continents 3.

Photo by Bill Miller.

-72/73 Gary WA2JQZ

Addendum: QSL confirmations we received:

Installing the 1296 MHz feed for Autumn Moon Bounce Communications

Text and photos by Gary Agranat.

A DSES team worked at the Plishner Radio Telescope site in Haswell on Sunday September 27, 2o2o. Team members were Ray Uberecken, Floyd Glick, and Gary Agranat. We accomplished the main objective, to install a new 1296 MHz feed at the focus of the 60 dish antenna. We also installed a mast in the ground, on which will later be added a Hughes Internet satellite antenna. Two friends of Ray’s came out and did an immense service by using metal detectors and magnetic rollers to clear nails and other metallic debris on the site. We changed out two of the locks. And we inspected the bunker.

Mast for Hughes Internet antenna

Ray and I met at the Plishner site at 0930 in the morning. 

We first installed a sturdy pipe mast behind the operations trailer, on which will be mounted a small satellite antenna to access the Hughes network geosynchronous satellite for Internet access.  Ray chose a spot that will not be blocked by the trailer or the 60-foot antenna.  We mixed cement and set the pole in its hole with the cement, using a level to check that the mast is vertical.

Moon Bounce (EME) Preparation

After that we manually rotated the 60-foot dish antenna to the service platform. I figured out, with Ray’s help and the checklists, how to use the software to monitor the antenna pointing. (Note: we might want to add a checklist just for this type of procedure, for using the software for just manual antenna pointing, as when we service the antenna.)

Floyd came out to the site by 1030. Ray and Floyd climbed the service platform. I worked on the ground to move feeds and tools up and down to them. We replaced the 408 MHz feed at the antenna focus with the newly built 1296 MHz feed. The 1296 MHz feed was built by KL6M, to specifications provided by Steve Plock (KL7IZW). The feed mount at the dish focus was designed by Ray, to enable the feed to more easily rotate out and be changed.

Conditions were somewhat windy, with a cold front coming, but still manageable. By the afternoon the winds had picked up enough that we postponed any further work at the feed. Work that still needs completion is installation of a 200 Watt amplifier at the feed. Since we are planning to operate at 1296 MHz from the Operations Trailer, which has a long coax hard line path to the pedestal and antenna feed, we expect significant power loss from the long path. We therefore need to boost the power again at the feed. We plan to install the amplifier the next weekend. We then also intend to test our setup by trying tropospheric scatter communications to the north.

We are planning to use this configuration to operate EME (Earth Moon Earth) Moon Bounce communications. And specifically we plan to participate in the ARRL EME contests on October 10-11, 2020 and on November 28-29, 2020 (UTC).

We discussed our plans for the upcoming contest in 2 weekends. The Moon then will be at last quarter phase. What that means is that it will rise on Friday night a little before midnight (about 1130 PM), and set Saturday a little after 2 PM. That means we will prepare to do overnight and morning operations. After the Moon rises we will try to pick up the ON0EME beacon in Belgium. We can try to contact across the Atlantic Ocean. The US East Coast will be in night time conditions, and so we anticipate less contacts to there. Daytime conditions, when more hams would be awake, are more favorable for the US West Coast, and across the Pacific Ocean to Oceana, Asia, and Australia.

Note that the 60-foot antenna will be configured with the 1296 MHz feed through the end of November. This will be an opportunity to try using it for other 1296 MHz communications, including troposphere scatter.  

Metal souring of the site

A friend of Ray’s who works at Planet Granite Ryan, and his brother, Rob, came out to the site also.  They have ground metal detectors and magnets on rollers, and systematically paced across the site to pick up nails and other small metallic debris.  They did pick up lots of nails, including along the roadway. They spent a few hours with us, and left after lunch. They did us a great service by helping remove a lot of this debris.

Combination Lock and Bunker Inspection

We attempted to open the combination locks at the gate, the bunker, and the generator shack. After still having difficulty, we replaced the locks at the gate and bunker, with the locks Myron Babcock obtained for us. These are similar model locks, and the combinations were kept the same.

We had a report that the bunker had been flooded by two successive rain storms in July. We opened and inspected the bunker. The bunker was dry, though the floor had more-than-normal dust and dirt, and some tiny debris was spread here and there. It will require a fresh cleanup before normal use. We saw no indication of mold from dampness.

Tumbleweeds were accumulated again at the ramp entrance.

We completed our activities by early afternoon, about 3 PM.

For the team, – Gary

We kept the antenna steering in manual configuration. We opened the System 1 steering software to monitor the position angles as we manually steered the antenna to the service platform.
We noted this radio interference at the site on our scope. This scan is from 0 to 1.8 GHz. The higher floor noise level at the left is from the sensitivity of our 408 MHz feed, which was still on the dish antenna, before we changed it out.
The 60-foot antenna is positioned for service.
Ray brought two feeds for the 60-foot antenna. This is Ray showing Floyd the 4 GHz feed, which we will use in the future, to calibrate the pointing position with geosynchronous satellites.
Floyd carrying the 1296 MHz feed to the antenna for installation.
The inside of the 1296 MHz feed. It is designed as a septum feed, with separate channels on each side for left and right circular polarization.
Rob with a metal detector, crisscrossing the site, picking up small metal debris.
Ray and Floyd on the 60-foot antenna service platform, starting work.
Removing the cover.
Ray is disconnecting the 408 MHz feed, so that it can rotate down and out for changeout.
The 408 MHz feed is now rotated down. It is connected simply by the shaft to the mount, for easier changeout.
Installing now the 1296 MHz feed. Its design doesn’t use a shaft, but instead will be securely fastened to the mounting frame.
Ryan using a metal detector on the west side of the site.
Our view towards the west. High clouds in the distance are an indication of a cold front gradually coming this way. We experienced steady windy conditions as the front approached..
Closing up.
Our view of Haswell in the distance. The clouds from the front were getting closer. By the time we left in mid-afternoon, the clouds were over us, but we had no precipitation.
The 1296 MHz feed installed.
We installed this ground mast. It will mount a small satellite antenna, to connect to the Hughes Internet network.

Radio astronomy observing and antenna repair at the Plishner observatory, February 15, 2020

Participants: Rich Russel, Bob Haggart, Glenn Davis, Lewis Putnam, Bill Miller, and Gary Agranat.

Photos by Bill Miller and Gary Agranat.

We worked at the Plishner antenna site in Haswell on Saturday February 15, 2020. We had three projects:

  1. Attempt at observing a circumpolar pulsar, utilizing the System 1 manual tracking system. (Rich Russel, Glenn Davis, Lewis Putnam).
  2. Complete building and installing shelf space in the Communications (Operations) Trailer (Bob Haggard).
  3. Repair of the 3-element Yagi ham radio antenna, to realign the three elements (Gary Agranat, Bill Miller, Bob Haggard).

1. The major task of the day was an attempt at a science observing run of a circumpolar pulsar. This is one of the brighter puslars in the sky. And being circumpolar, it is always above the horizon, though it can still get relatively low to the horizon. The observing technique required continually pointing a the celestial coordinates and integrating the signal for at least a half hour. By integrating over time, the random noise tends to cancel more, leaving the actual radio source signal the time to accumulate and sum to a higher level than the noise floor.

Science Lead Rich Russel (seated) and System 1 Lead Glenn Davis setting up the pulsar observations.
Bill Miller, Lewis Putnam, Rich Russel, and Glenn Davis in the Communications Operations Trailer during the observation runs.
The display for the System 1 manual tracking. The circles in the black field represent the antenna beam width for different frequencies. The large blue ring represents a 4 degree diameter beam width, and is for the 408 MHz feed currently being used for the pulsar observing. The inner yellow ring is 0.8 degrees in diameter, which is for our HI hydrogen observing at 1.4 GHz. The pink dot represents where the center of the beam is pointing. A star field map is projected on the background black field. The upper part of the display shows azimuth and elevation of the antenna, and its conversion to the celestial coordinates of Right Ascension and Declination at the current time.
The signal strength across the frequency spectrum being observed. For pulsar observing, we cannot detect the pulsar signal itself in real time. We must integrate the signal over at least a half hour of observing. Then we process the signal, with an expected pulsar timing. That process averages out the background noise while adding the actual pulsar signal enough to elevate above the noise floor — in theory.
The 60 foot dish antenna turning to aim at the pulsar.
The 408 MHz antenna feed. Ray Unberecken has designed a base for the antenna feeds so that these can be easily swiveled out for service and changeout. Ray designed and built this feed.

2. Bob Haggart worked on completing the building of desk and shelf space in the Communications Operations Trailer. The additional space is actually important, as that gives us a means to organize and better utilize our work space, and not instead have items pile up randomly.

Bob Haggart
New desk and shelf space in the Communications Operations Trailer.
New desk and shelf space in the Communications Operations Trailer. Note the addition of amenities, of microwave oven and coffee pots.

3. A third project was the repair of the front element of the 3-band Yagi ham radio antenna on the 40-foot tower. The front element had rotated slightly askew.

The front element of the 3-band Yagi ham radio antenna on the 40-foot tower rotated askew somehow. Fixing this was our third project undertaken this day.
The tower was rotated down for service.
Bill Miller aligning the front element. Also working on this were Gary and Bob. Bob utilized cable lengths to help ensure actual evenness. We also used squares and levels.
Gary working on the antenna. The ladder was used to access and retighten the center supports at the mast.
While the tower was down for the service, Bill reinforced the structural support for the 2-meter band vertical antenna on a side support from the tower.
Gary raised the tower back up.
The 50-foot tower almost at its vertical position.

After the tower was raised back to vertical position, Bill and Gary slightly rearranged the positioning of the 80 meter dipole that is supported from a pulley on the tower. The repositioning separated the dipole with better clearance from other nearby wires

We discovered that the Communications Trailer phone used for our 2-meter talk-in radio was transmitting but not receiving. Bill started to troubleshoot it.
Bill photographing the dish antenna. Pikes Peak is visible in the distance, over a hundred miles away.
Gary also photographed the dish antenna.
The 60 foot antenna rotating back to its parking position after the observing runs.

Rich Russel processed the observation data, but the processing did not bring out the pulsar. Troubleshooting is a topic at the February Science Meeting. Meanwhile, the System 1 antenna pointing system worked well.

The group finished up the work well before sunset, so that traveling back with the sun setting was not a significant issue. We had good weather for this trip, for a winter day in February. Our temperature was in the 40s F, which was actually midler than the 30s in Colorado Springs. And our wind was light.

Work trip at the Plishner antenna site, Saturday November 16, 2019

Text and photos by Gary Agranat.

As we do each third weekend of the month, we had a scheduled work day at our DSES Plishner radio astronomy antenna site in Haswell, Colorado. Our members who participated on this weekend were Steve Plock, Ed Corn, Ray Uberecken, and Gary Agranat. Work objectives were:

  • Completion of installing the antennas and cables on the new 50 foot ham radio antenna tower.
  • Servicing the 60-foot dish antenna feed.
We typically meet first at the Ellicott firehouse for carpooling, before heading to the Plishner site.

I will save discussion of the 60-foot antenna feed for the Engineering Meeting minutes. That work was done by Steve Plock and Ray Uberecken. In this post I will describe the work we completed for the 50 foot tower.

The 60-foot dish antenna was rotated to the service tower, to enable Steve to work at the feed point.

For our 50-foot tower work, we installed a second vertical antenna for normal contacts on the 2-meter VHF band. This gives us a second 2-meter band capability, independent of our already existing 2-meter band talk-in radio. We then installed coax cables for both of the 2 meter band antennas on the tower.

We also serviced the 80 and 160 meter band dipole antennas that the tower supports: 1) We replaced some of the nylon rope that lifts the dipole antennas to their deployed positions. Previously we had connected shorter pieces of rope and knotted those together. But the knots stuck in the pulleys, and we therefore replaced those with longer sections of rope without knots. 2) We neatened the arrangement of the wire antennas supported by the tower.

Captions to the photos provide more detials of the work.

Ed and Gary lowered the 50-foot ham radio tower. A second VHF 2-meter band vertical antenna was added to the side of the tower, in addition to the VHF talk-in radio antenna placed last month at the top of the tower. And coax cables were added that feed both VHF antennas.
The second VHF 2-meter band antenna was added here, at this upper location along the side of the tower. Two stand-off support arms were bolted to the tower. Then the antenna was connected to its mast, which fits from below as a sleeve fitting. And the mast was connected to the supports. The mast serves both for structural support and as a counterpoise.
The tower raised up again.
The tower supports these ham radio antennas.
The tower supports the 160 meter band and 80 meter band dipole antennas by rope and pulley systems. The 160 meter antenna is oriented east-west, and the 80 meter antenna is oriented perpendicularly north-south.
Ed’s work truck on site.

After we serviced the ham and radio astronomy antennas, Steve made us lunch by smoking beef sausage in the grill. That was served with coleslaw and potato salad. Gary also brewed coffee.

After the tower was raise back up, Gary operated on phone and FT8, using the tri-band Yagi on 15 and 20 meters, and using the 80 and 160 meter dipoles. (10 meters was tried also but with no results, likely due to the poor propagation conditions.) The operating was in part for fun, and in part to verify that the antennas we put back up functioned properly. They all functioned well.

After lunch I did some ham radio operating using the tri-band Yagi, and also the using the 80 and 160 meter dipoles.  With the tri-bander, I first made a phone contact to Hawaii on 15 meters, before the bands got busy with the ARRL sweepstakes.  Then I operated FT8: on 15 meters I mostly contacted South American stations (lots of Brazil), plus some US stations when they were there (including North Carolina and Montana).  On 20 meters the band opened across the Pacific.  We had many calls to us from Japan. Perhaps they saw our profile on QRZ, or perhaps they noticed our rare grid square.  Also across the Pacific, we made two contacts with South Korea, one with mainland China, one with Indonesia, and one with Australia.  The band became weaker for US and Canadian contacts, but we did have some of those too.  I alternated going to 80 meters, and had a few more domestic contacts there. These were with our K0PRT station callsign. Later I also used my callsign, on 20, 80, and 160 meters. 160 meters had noise at the FT8 frequencies. But I went to the upper portion of that section of the band, which was just slightly better. I managed 4 contacts on 160 meters, to as far away as Kentucky. I would say our antennas were working well.

Within a few days we received a number of e QSL confirmation cards.

The site at the end of the day.

Ray left after lunch. Ed and Steve left before sunset. Steve tested the range of the new talk in radio antenna on the tower as he and Ed drove home away from the site. We had good contact to as far away as Sugar City. At JRs in Ordway, we could hear each other, but Steve needed to turn off his squelch. And at that point there were some slight dropouts. But we could still communicate. That is a great improvement for our talk-in system. Gary stayed and operated the ham station until a little after dark, and then closed up and departed too.

Antenna Raising

Plishner Antenna Site Work Trip Report. By Gary Agranat. Photos by Steve Plock.

Ed Corn, Steve Plock, and Gary Agranat traveled to the Plishner antenna site in Haswell this past Saturday, October 19, 2019. The team completed erecting the 50-foot ham radio tower.

Completing the tower erection involved several tasks:

  • Installing the 3-band/3-element Yagi HF ham antenna,
  • Installing the 2-meter band vertical antenna on top of that mast. This will be our new antenna for our VHF talk-in radio system.
  • Installing two stand-off bracketed supports near the top of the tower on the sides, to raise and hold the 80 meter band and 160 meter band dipole wire antennas. This arrangement replaces the long pole that previously centrally supported those wire antennas. These bracket supports each have a pulley and rope, to raise and lower the wire antennas. The tower also supports a 6-meter band delta-loop antenna, which is simply tied from height.
  • Securing the coax cables for the Yagi and vertical antennas along the side of the tower.
  • Properly arranging the system of wires, coaxes, and support cables.
  • Raising the 50-foot tower, which involves turning the winch system that rotates the tower up from its pivot plate at its base. The 50-foot tower is raised from a pulley system on a second smaller adjacent tower.
  • Once the 50-foot tower is raised, securing 3 guy cables.
Steve took this photo of Ed and Gary at the completion of the tower raising.

Steve tested the SWR of the 3-band Yagi antenna with an analyzer. The antenna elements had been measured and assembled on a previous trip, to be optimized for the middle of each of the operating bands, of the 10, 15 and 20 meter bands. Steve measured an SWR ratio of 1:1 (perfect) at 28.51 MHz for the 10 meter band, and 1:1 at 21.19 MHz for the 15 meter band. The 20 meter band resonated with an SWR of 1:1.35 at 14.16 MHz. This is excellent, and as expected.

For lunch, Steve treated us with smoked ribs from Broken Bones BBQ in Monument, with sauces, potato salad, and coleslaw. Gary brewed coffee. Also, the team met first at the firehouse in Ellicott. Gary baked orange-cranberry muffins. We ate our muffins at the firehouse, and shared the rest with the fire department crews there.

The team left the Plishner site by 4:30 pm.

The tower work began about a year ago. The work involved support and efforts by a number of team members. See our past posts from October 19-21, 2018 http://dses.science/plishner-site-report-for-the-weekend-of-october-19-21-2018, August 24, 2019 http://dses.science/plishner-work-trip-report-august-24-2019, and September 28, 2019 http://dses.science/work-site-trip-report-at-the-haswell-plishner-radio-telescope-site-september-28-2019.

The tower should significantly improve our capability to communicate long distances on the 10, 15, and 20 meter bands with the Yagi. The 2 meter band vertical should enable us to communicate on our talk-in VHF radio system to much further out.

Work Site Trip Report, at the Haswell Plishner Radio Telescope Site, September 28, 2019

by Gary Agranat

DSES Participants: Gary Agranat, Ed Corn, Bob Haggard, Bill Miller, Steve Plock.

Ed, Gary, and Bill met first at the Ellicott Fire Department, while Steve and Bob each traveled ahead solo. Ed encountered a problem with his truck and had to return home, but he passed the tower antenna mast and connector supplies to Bill. Steve and Bob arrived at the site by 9 AM, and Bill and Gary arrived by 10 AM.

We encountered light drizzling rain and low clouds on the route to the site, but the rain let up once we were on Highway 96 past Ordway. Steve called Ed to let us know the weather was good at the site. The weather completely cleared later, while the temperature remained comfortable.

Steve coordinated by phone with Skip Crilly and commenced a 48-hour long SETI drift scan at -7.5 degrees declination, run simultaneously with Skip’s antenna in New Hampshire. The 48 hour run will scan the -7.5 degree declination band twice, and therefore acquire a repeat set of data that can be compared with the first set.

Bob worked at the Communications Trailer, doing carpentry and painting work. He built a wood frame seal around one of the air conditioners, fabricated and painted a seal for the solar-powered fan, and painted the third work table he had added previously. Bob told me the trailer back door hadn’t been sealing — until recently — because it actually had not been closed properly. He closed the door properly and it is now sealed, without requiring further work.

Bob at work.

Bill, Steve, and Gary worked on preparing the 50-foot ham radio antenna tower.

Bill spliced the controller feed cable and wires for the antenna rotator, and verified proper operation, with some assistance from Gary. Bill used Steve’s crimping tools. The three of us then fed the controller cable through the dog house to the tower.

Bill first checked online for the correct color code standards for the control cable wiring. Then he matched the correct colored wires from the cable to the wires on the rotator. After the wiring was completed, the rotator and controller were tested for correct operation and correct meter calibration.

At the tower outside, the rotator was attached to its base plate, and that assembly was then attached to the tower.

When we tried to fit the mast in the holding tube at the top of the tower, we found that top opening was slightly damaged, and the mast wouldn’t fit in. We then took turns filing and grinding out the hole until the mast did fit properly. Steve applied a lubricating grease, to mitigate against the mast binding stuck when rotating. Eventually we successfully installed the mast to the rotator itself. We also retrieved a guy wire cable left at the communications trailer and attached it as the third guy wire connection for the top of the tower.

Bill with Steve, filing out the top opening for the mast. You can see two of the three guy cables already attached to the top of the tower.
Steve
Gary
Bill and Steve fitting the mast at the tower top. The mast was then securely fastened to the rotator.
The 60 foot antenna positions at 39.5 degrees elevation for the 48-hour SETI run, in progress.

Before we left for the day, we had two visitors from Eads come to look at the site. We all spent a little while talking about the site and the work.

Addendum

By Gary Agranat

Bob was the first to leave, then Steve. Steve said he would check on Ed on the way home. Bill and I (Gary) convoyed out last.

While Bill and I were driving back to Colorado Springs, about an hour and a half into the trip back, an auto accident happened right in front of us, with a vehicle overturning.

The accident happened while we were driving westbound on Colorado Highway 94. It was early evening by then, about 5:30 pm, and the sun appeared above in the western sky. Bill and I had been talking on the VHF ham radio during our 2 1/2 hour drive back from the site. Bill was driving ahead of me.

A couple of miles before Rush, I saw three vehicles approaching from a long distance behind, moving faster than Bill and me, while we were going at about the speed limit. I mentioned the vehicles to Bill, and we stopped talking, anticipating they would choose to pass us soon. They did soon pass us, all three staying close to each other. We could see they were some sort of laborers, with equipment filling their vehicles and with ladders on top. The third vehicle passed us as we were going up a hill, with the solid yellow line on our side. Bill commented that car was taking risks, although they all were driving in a risky manner. There was no visibility over that hill. And furthermore we were driving into the sun. A couple of miles later we reached the town of Rush, where the speed limit lowers from 65 to 50 mph. As those three vehicles ahead approached the town, I suddenly saw the last one veer to the left side of the road, and then roll over, with its front turned facing the opposite direction. Bill and I both stopped, as did a driver heading in the oncoming direction who almost got hit. And several more cars stopped briefly. We saw one occupant lie in the grass, but he eventually got up.

Bill had a better view of the accident ahead of me. It looked to him like one of the three vehicles ahead suddenly slowed as he reached the town with the lower speed limit. The sun was right above and ahead of us, which created a greater visibility challenge. The sudden slowing apparently caught the last driver off guard, as he swerved to the right to avoid the vehicle ahead of him. But that put his right side of his car in the grass there, which caused a tire blowout and a swerve then to the left. And he overturned.

The volunteer fire department nearby responded relatively quickly. But we waited about 2 hours for a sheriff’s deputy to arrive, and then another hour for a State Patrol officer to arrive. The State Patrol was who we had to give our witness statements to. We didn’t finish with that until 8:30 pm, and I didn’t get home until 9:30.

The driver of the overturned vehicle eventually got up, but he refused medical help, although we wondered if he nonetheless might have been hurt.

Meanwhile the communities there are small, and everyone there knows everyone else. The other driver who stayed was a local woman school teacher. We chatted with her and also the volunteer firefighters, and with some of the neighbors who stopped to see if everyone was OK.

The State Patrol officer later explained to us that there were 6 accidents in the region called in within a period of 5 minutes, when our accident happened. One happened just about 9 miles further west from us on Highway 94, in the town of Yoder. That accident had injuries, and some of the firefighters who were with us then had to leave to respond to the other accident.

At a minimum, this is a reminder to take care to drive safely, especially with limiting conditions like the sun setting ahead.