Colorado Springs Cool Science Festival

Cool Science Festival Presentation on Saturday October 11, 2020

Rich Russel made an online presentation at the Cool Science Festival. The presentation covered the science of radio astronomy and the accomplishments of the Deep Space Exploration Society. The presentation was streamed live on Facebook and Youtube. You can watch the presentation here:

Carnival Day 2020: DSES – Finding Pulsars Using Radio Astronomy (3:50 pm)

Astronomer Rich Russel from the Deep Space Exploration Society describes how he uses the 60-foot Plishner radio astronomy dish antenna 90 miles southwest of Colorado Springs to detect pulsars in deep space.This live-stream presentation was part of our virtual Cool Science Carnival Day for kids, the main event of the 2020 Colorado Springs Cool Science Festival. You can find more information at:https://www.coolscience.org/carnivalday.html

Posted by Colorado Springs Cool Science Festival on Saturday, October 10, 2020

This 8-day regional event, designed to ignite wonder and inspire curiosity about the world around us, attracts between 10,000 and 20,000 attendees each year. For more information about the Cool Science Festival go to:

http://www.coolscience.org

DSES Sept 19, 2020 Pulsar Observing Trip Observes 2 More Pulsars

Bob Haggart and Rich Russel did an observation all nighter on Friday/Saturday (September 19, 2020, GMT) and observed 2 pulsars.
VELA (B0833-45) is one of the strongest pulsars at 5 JY while B1946+35 is at 0.145 JY.
DSES is one of the most northern amateur stations to detect VELA. We detected it in 15 minutes at 5 to 6 degrees elevation.
This make 13 pulsars and puts us 5th on the international amateur pulsar hunter list. http://www.neutronstar.joataman.net/

DSES Pulsar Observing Team netted 5 new pulsars!

The DSES team of Rich Russel, Ray Uberecken, and Glenn Davis observed for pulsars on Saturday September 5, 2020 at the DSES 60-foot dish antenna at Haswell, CO.

The team successfully observed 5 pulsars which we hadn’t been able to detect before.

The success is attributed to the calibration of the antenna pointing system and the new automatic tracking system developed by the System 1 team.

We started with calibrating the azimuth of the antenna (it was 2.5 degrees off!) Elevation was good. Glenn put the offset in the auto tracking system and we were able to detect the B0329+54 pulsar within 30 minutes. (We use the B0329+54 pulsar, the first one we successfully saw last May, as a starting reference. If we can observe this, we know our system is working.) Every pulsar we looked at after that was detected – we just ran out of time for more!

It is possible we missed observing previous pulsars because our pointing accuracy was off.

See the slide set for our observation summary.

http://dses.science/wp-content/uploads/2020/09/8-Pulsars-Observed-so-Far-9-5-20-r3.pdf

We are pretty sure we observed the Crab pulsar. The last slide shows an analysis of the time between pulses we measured for the Crab pulsar, compared to the standard reference database.

More detail to come at the next science meeting

Our total pulsar count is now 8!

Deep Space Exploration Society 3rd pulsar observed on Saturday July 11, 2020

By Dr. Richard Russel, DSES Science Lead

The pulsar, B1133+16, was observed on the 60 ft dish antenna by Rich Russel and Ray Uberecken after 4 hours of tracking and collecting data on the pulsar.

This pulsar is the weakest object observed by DSES at 0.257 Janskys!

The pulsar is noted for having a “conal double” peak in its profile. Our observation picks this out very well.

The PRESTO analysis program results are shown below.

The conal double plot is produced from the raw data and plotted in excel.

PSR B1133+16 is located at RA 11h 33m 27s Declination +16.07°, in the northeast part of the constellation Leo. It was observed with a pulse period of 1.187 seconds. Our center frequency was 417 MHz, and we used a 10 MHz bandwidth.

(The name B1133+16 conveys the celestial sky coordinates, referenced to a standard year epoch. In this case the B indicates the position is from the year 1950, the “Besselian” year, named after the German astronomer Friedrich Bessel.)

Congratulations to the entire membership for turning the DSES dish into a world class scientific instrument!

Thanks!

Dr. Richard Russel

DSES Science Lead

First DSES Pulsar captured on the 60-ft dish by the observing team of Richard A. Russel, Ray Uberecken, Bob Haggart On May 2, 2020

By Dr. Richard Russel, DSES Science Lead.

The pulsar, B0329+54 (J0332+5434)1, was observed on the third try just before the team was ready to pack up for the day on Saturday, May 2, 2020. A final modification of the software defined radio settings was tried (all the gains were set to a minimum) did the trick.

The 60-ft dish was setup to manually track the pulsar using the System 1 tracking program software developed by Glenn Davis and Phil Gage. This program allowed us to track the pulsar’s position by keeping it in the bullseye.

We observed at a frequency of 420 MHz, with a bandwidth of 10 MHz.

The pulsar system was initiated last year by Steve Plock. Our mentor throughout the effort has been Dr. Joe Martin (K5SO) in New Mexico. Joe validated that we made a successful pulsar capture.

A screen shot of a computer

Description automatically generated

The GNU radio software was turned on to start the acquisition.

A screen shot of a computer

Description automatically generated

It should be noted that you cannot tell if you have the pulsar real-time because it is pulsing way below the noise level. After about 30 minutes, we stopped the acquisition and we moved the post-processing over to Bob’s new workbench.

A picture containing person, outdoor, man, sitting

Description automatically generated
Bob Haggart constructing the new workbench.
A picture containing indoor, table, kitchen, counter

Description automatically generated
The new workbench in the science trailer, built by Bob Haggart.

Rich and Ray celebrate our first pulsar! (Bob’s taking the picture)

Two people standing in a kitchen

Description automatically generated

The first iteration of post -processing requires that the pulsar period be estimated with a program called TEMPO. The first iteration is shown below. It clearly shows a pulsar because of the prominent peaks and the lines tracing down the plots, however it is not quite set to the optimum period.

After some more iterations the final picture looked cleaner.

More analysis using the resultant data files allowed us to verify the pulsar as B0329+54 (J0332+5434).

Even the pulse width at the 50% height (W50) was estimated. The preliminary analysis below shows a measured W50 of 6 ms. The current value in the ATNF database is 6.6 ms. This is real close and confirms our observation.

More observation runs are planned and DSES can can consider itself one of the few amateur organizations to accomplish pulsar observations2.

A picture containing outdoor, clock, tower, water

Description automatically generated

Reference:

  1. PSR B0329+54 is a pulsar approximately 3,460 light-years away in the constellation of Camelopardalis. It completes one rotation every 0.71452 seconds and is approximately 5 million years old.[Ref: wikipedia]
  2. Our successful observation is reported in Neutron Star Group http://neutronstar.joataman.net/

Very Large Array (VLA) Image Reduction Results

Recently Dr. Richard Russel attended the Very Large Array (VLA) Imaging course in Socorro, New Mexico. This course taught how to take the data sets from the VLA archive and produce images. The following is the first set of images reduced from the VLA archive by Dr. Russel.

Images were made of these astronomical objects:

  • 3C75 Binary Black Hole System
  • 3C391 Supernova Remnant
  • Asymptotic Giant Branch (AGB) Star IRC+10216
  • MG0414+0534 Gravitational Lens HI Absorption Line

Each image takes about 1 day to produce from the raw observation.

http://dses.science/wp-content/uploads/2019/10/VLA-Imaging-Results-1.pdf

Hydrogen Drift Scan using the new 9-foot Dish

By Dr. Richard Russel

The DSES 9-foot dish is operational at Dr. Russel’s house in Colorado Springs. It is outfitted with a 1420 MHz feed with 2 low-noise amplifiers with over 40 dBi of gain and a noise figure of 0.35. The receiving system is a Spectracyber 1.

The output of the Spectracyber shows the relative peaks of hydrogen with a corresponding Doppler measurement.

Dr. Russel performed a drift scan of the visible sky and plotted the relative peak hydrogen signals.

The hydrogen maps very well to the visible Milky Way. The plot below converts the Celestial Coordinates into Galactic Coordinates. Note that the peak hydrogen is concentrated near the 0 Galactic Latitude.

Special Thanks to Ray Uberecken and Steve Plock for helping to set up the system.

For more information:

Dr. Richard Russel: DrRichRussel(at)netscape.net

Deep Space Exploration Society: www.DSES.science

Observations using the 60-foot Dish during the Open House, August 11, 2018

Editor’s note: During the DSES Open House on the weekend of August 11, 2018, three receiver systems were tested on the 60-foot dish antenna. Dr. Richard Russel reports on their successful results, and he shows what we see in our data plots. Some highlights to point out:

  1. The Spectracyber definitively observed the neutral hydrogen of the Milky Way as the beam width completely crossed the galactic plane.
  2. The RASDR4 observed a known neutral hydrogen radio source, which has a closer cloud along the line of sight that absorbs some of the hydrogen signal. The distinctive signal feature is known from published data by the Parkes Radio Observatory in Australia.
  3. The RASDR2 detected a 1296 MHz beacon set up at the home of a member about 80 miles away.  This is our first definitive detection of a beacon at 1296 MHz.

-Gary Agranat, website editor.

 

Open House Observations using the 60-foot Dish Antenna

The DSES and Society of Amateur Radio Astronomers (SARA) teams installed three different receivers onto the 60-foot dish during the open house.

 

Successful Installation and Testing of the DSES Spectracyber Neutral Hydrogen Receiver.

The Spectracyber was installed on the 60-foot dish during the DSES Open House on August 11, 2018.

The Spectracyber measures 1420.406 MHz +- 600 KHz. The observation was taken while passing the galactic plane at RA: 19hr 5 Min, Dec: 6 degrees 0 Min.

The observation shows a significant signal to noise ratio as seen below.

Follow-on observations will allow for measurement of the rotation rate of the Milky Way and Solar System!

 

RASDR4 Receiver Successful Observation of Hydrogen Absorption Line

Tony Bigbee used his RASDR4 on the 60-foot dish to observe this hydrogen absorption line at RA: 18.15hrs, Dec:-20 deg.

This target is a hydrogen source with a cloud of material between the source and Earth that absorbs the hydrogen energy resulting in a drop off of signal as shown below.

1296 MHz Beacon Observation using a RASDR2

Bogdan Vacaliuc installed a RASDR2 onto the 60-foot dish and was able to observe the 1296 MHZ beacon at Ray Uberecken’s house, about 80 statute miles distance to the west-northwest. This observation helped verify the azimuth pointing accuracy of the 60-foot dish.

 

Preliminary Baseline 420 MHZ Celestial Drift Scan Survey, December 2016

Here is my fist shot at a survey! A lot of things I can fix for next survey, planned for after Christmas.

1) Will have a 15dB preamp installed on mast
2) Will raise frequency to midrange of antenna sweet spot (435 MHz)
3) Will do a better alignment of antenna

This was fun!!!!!!

Rich

Dr. Rich Russel
drrichrussel@netscape.net

Link to Preliminary Baseline 420 MHZ Celestial Drift Scan Survey, December 2016: 420-mhz-drift-scan-survey-rev-4

New Milky Way H Map – Incredible Detail

Sky & Telescope has a short, illustrated news item today about high resolution 1H (atomic hydrogen) observations of our galaxy from Australia and Germany. It includes a video showing how the view changes with wavelength due to Doppler shift. I thought this would be good to share; this is what we’ll be looking for with the HI drift scans.

Astronomers Map Millky Way in Incredible Detail – Sky & Telescope

Read the Sky & Telescope article.