Plishner Site Report – January 25 & 26, 2018

Steve and I arrived at the site about 9:40 AM Thursday. We energized the main line up to the bunker. We than made the necessary voltage checks for each of the branch feeders and energized the entire distribution system. The Plishner site is now on grid power.

All of the battery packs and inverters are still in service. Reminder that any light or plug  sprayed with red paint is an inverter outlet, any plug or light with no paint on the box is grid power. Be sure to turn everything OFF before leaving the site.

Steve worked with Skip Crilly at Greenbank by phone to turn up equipment and point the dish for the data observations. Steve had everything running for the first observation and continued running until 12:50 PM Friday the 26th. We shut down at that time and removed the equipment for shipment back to Skip for maintenance and upgrade. Steve will ship after returning back. All indications are a successful data run.

Between checking equipment, we added wire to the 160M dipole at the bunker. It is better but needs some extra work. Also filled the wire trench in front of the concrete slab at the top end of the ramp to allow driving on to the slab and not having to jump the trench going in to and out of the bunker. This leaves about 500 feet of trench to fill; We will need some help with this in February.

I also installed a dedicated outlet in the generator shed to feed the LAN switch that is necessary to provide cat 5 Ethernet from the Comm Trailer to the bunker. The last item we covered was moving the WIFI hot spot to the bunker. There is now wireless internet in the bunker. We did not have the manual for the converter from wireless to cat 5 with us to configure the unit. This will be completed next trip to provide internet on cat 5 cable end to end at Plishner. This relocate removed the RF from the hot spot in the Comm Trailer during observation times.

Note: The sump pump in the battery room is on grid power and the front entry way sump pump is on inverter. I will change over to grid power after a wiring change. This will be first order of business next trip.

We secured the site and left about 1:30 PM Friday.

Ed and Steve

DSES earned a first place award in the ham radio 2017 Colorado QSO Party

K0PRT, the club ham radio station of the Deep Space Exploration Society, earned this First Place certificate in the 2017 Colorado QSO Party, for our category.  The QSO party ran last September.

We operated Morse Code (CW) and Phone (SSB).  We entered as a portable station,  because we made contacts while traveling to the telescope site, and then while at the telescope site itself.  We made 37 contacts around the U.S. and Canada.  Thanks to all of the team for supporting this event.  Our operators were Gary Agranat WA2JQZ and Bill Miller KC0FHN.

DSES 2017 Year End Update and Membership Renewal

December 22, 2017

To all Deep Space Exploration Society (DSES) Current and Former Members:

I want to wish everyone a Merry Christmas & Happy New Year! Today marks the first day of our 2018 membership dues drive. Our organization relies on annual membership dues to fund most all of the DSES projects at our Paul Plishner Radio Astronomy and Space Sciences Center near Haswell, CO. Annual dues for voting members, continues to be $50.00. For those who wish to be involved as non-voting members the price is $20.00. Those members who have recently joined within the past 3 months (October-December) will be credited for 2018. Annual elections of board members/officers will be in late January. You must be current on your dues to vote in the elections.


You can pay your dues on the DSES web site ( by credit card or PayPal. You can also mail dues to the following addresses:

4164 Austin Bluffs Parkway #562,
Colorado Springs, CO 80909-2118


Your canceled check, Paypal receipt or credit receipt will be your acknowledgement of your dues paid. If you want a separate receipt signifying payment, please note that with your payment and I will mail you a receipt. PLEASE INCLUDE YOUR CURRENT MAILING ADDRESS, EMAIL ADDRESS AND CONTACT PHONE NUMBER. Also let me know if you DO NOT want this info to be released to the general membership. I would like to pass this membership information containing email addresses and phone numbers out to all members.

Please read the attached DSES 2017 Highlights written by Bill Miller, your Secretary. He did a fantastic job in covering the great success we had in 2017.

Please feel free to email or call me if you have any questions or if you have a change of any contact information, email, phone or snail mail.

Thank You and have a great 2018 New Year;

Myron F. Babcock; DSES Treasurer

[To contact Myron, please use the email address dsestm{at} . ]

Read our Deep Space Exploration Society 2017 Highlights.

DSES Commercial Power Installation Update

Posted by Myron Babcock, DSES Treasurer.  Photos by Steve Plock, DSES Vice President.

Thanks to Skip Crilly for his $37K donation and to Steve Plock and Ed Corn for leading this effort to fulfill the dream of connecting the DSES Plishner Site to the AC Power Grid. Steve reported on Saturday December 9 that approximately 22 power poles, almost 5000 feet of wire, and a 25KVA transformer were installed last week. The Colorado Southeast Power Association worked 5 days in accomplishing this task. Saturday December 9, Steve Plock, Ed Corn, and Glenn Davis spent the day assisting local resident, Mark Nelson, from Haswell, CO in the trenching of approximately 600 feet of ground from the transformer pole area to the Southwest corner of the bunker area. Number 4/0 3 wire URD/with reduced neutral wire is now in the trench and once inspected by a Southeast Power Association representative the trench will be filled back in. Ed Corn has the necessary supplies for final connection to the bunker power panel. Once completed DSES will have 220 VAC 100 amp service in the communications trailer and 220 VAC 100 amp service in the bunker. Currently the plan is for the existing 30+KW propane generator to be disconnected. A decision will be made at a later date as to the disposition of this generator. Existing solar panels and batteries will continue to be used until such time as it is deemed the continuing expense out ways its usefulness.


Looking North along Kiowa County Road 20. The white structure in the background is the 200 foot tall grain elevator 5 miles north in Haswell, CO. The electric meter will be mounted on the nearest pole next to the fence.
The trenching operation starting from the southwest corner of the bunker area. The structure at the starting point of the trenching operation is the “dog house” emergency bunker entry/exit over the recently constructed spiral staircase. Next to this structure is a 40 foot telescoping mast supporting the 160 & 80 meter dipole antennas.

Aerial photos of the radio telescope site, summer 2016

These are some photos I took of the DSES radio telescope site about a year and a half ago, in July 2016.

The altitude of the aircraft was 7500 feet above sea level.  The elevation of the site is about 4500 feet, and so these photos are about 3000 feet above the ground.  The radio telescope site is located in Kiowa County. The neighbors are ranches and farms.

Visible from the air, to the southwest of the radio telescope site, are the remains of a World War II training airfield.  The pattern of runways forms a triangle.

-Gary WA2JQZ

October 29, 2017 DSES Plishner Site Work Trip Report

Report written by Bill Miller, DSES Secretary.

Location and Time: On Sunday, Oct 29th Ed Johnson and Bill Miller made a trip to the site to reinstall and tune the computer for the System 2 dish controller.

Attendance: Ed Johnson, Bill Miller

Site Activities:
A. Bill arrived on site by 9:00am, unlocked the facilities and fired up the generator. Ed arrived a little later and brought in the bench computer on which he had repaired the operating system corrupted by a MS update from the last trip. We immediately hooked up the computer to the controller interface in the pedestal control deck via the Ethernet LAN interface and got to work. Several items in the software needed to be corrected.

B. Ed added a Start and Stop ramp subroutine to the motor drive software to prevent the system from abruptly starting and stopping the drive at high speed. This generates a stepping ramp function to start the motors slowly and speed up to the desired speed and then slow down in a similar fashion to stop. It greatly helps to reduce the stress on the system and should reduce over currents from popping the 3 Amp breakers on the drives. Some amount of iterative tuning of this was needed to get this to work just right.

C. A problem was seen when the computer would pause and stop communicating with the interface about every 10 seconds. This is a critical fault which would render any closed loop control unstable or ineffective. We attempted to find the source of this problem. We traced and substituted the LAN switches, CAT5 wires and connections and eliminated this as a cause. We turned off as many processes in the machine that could interrupt the system as possible. Ed found that by unloading the MS Visual Studio program that the interrupts occurred about half as frequently but they still occurred. We finally concluded that the PC was just not fast enough to perform the control function with all of the other MS programs and housekeeping functions and this was causing it to hesitate. Ed decided to donate another laptop he has with considerably more speed for this function and will ready that for the next trip. Bill will pick it up at Ed’s in Limon if Ed can’t make the trip. In the mean time we left the bench computer in place to control the dish pointing.

D. While Ed was modifying the software and testing the movement, Bill monitored the result from the pedestal control deck and also spent some time mapping out about half of the controller box. He will finish that on the next trip and transfer the diagrams to schematic capture for documentation.

Observations: Some important observations are as follows:
A.  It was found that there is a fault in the elevation optical encoder. At several particular positions of the elevation the encoder would jump a number of degrees in value. For instance at 44 deg of elevation it would suddenly jump to 50 deg. So the 6th significant bit appeared to be faulty. These errors always occurred at the same positions indicating a fault in the encoder and not the electronics attached. This could be contamination or a scratch on the optical device. Since we use only half of the encoder for the +0 to 180 elevation position sensing it might be possible to realign the encoder 180 deg off and use the other half of the bits if no errors are seen there. If not the encoder will have to be repaired or replaced. This problem was not seen on the Azimuth encoder but we were not looking for it. A means of testing the encoders for such a defect would be a handy utility in the software that we should add.

B.  Even with the start/stop ramp function and driving the dish at a relatively slow speed we still had the 3 amp breakers tripping, sometimes in the middle of a continuous movement when we were not starting or stopping. We need to measure the currents in these breakers and determine the root cause whether an overload, controller fault, worn or miss-sized breakers. This is a real nuisance when trying to move the dish and must be corrected before computer control can be effective.

C. Bill stayed in the tower communicating with Ed on the radio to position the dish from the previous ~ 45 deg elevation for 40 Eridani observation to the parked 90deg (birdbath) and 315 deg azimuth position. This 315 deg azimuth position is the optimum service setting to allow access to the upper deck and dish though the service portal. It is also the best position to allow the feed point to be driven in elevation only to the -0 or 180 deg position to place the feed on the service tower.

Shut Down:
We had to wrap up the work by about 3pm to travel to other commitments. After setting the dish to the parked position Bill shut down the lights, locked all of the doors, returned the keys and shut down the generator using the original procedure of turning off the main gas valve. This may not be required anymore but as yet we haven’t officially changed the procedure and it is the safest condition if we are not on site for a while.

That concludes the minutes from our Plishner site work trip of October 29th, 2017

73, and keep looking up! 
Bill Miller
DSES Secretary
Email: mountain_son[a]
Snail Mail to our new Colorado Springs Address at:
Deep Space Exploration Society
4164 Austin Bluffs Pkwy. #562
Colorado Springs, CO 80918-2928

Plishner site work trip October 21, 2017

During the work trip on October 21, 2017, a single-band 1420 MHz circular polarized feed was installed. This feed was built by Steve Plock KL7IZW.

The antenna was set with an azimuth of 149.6° , and with an elevation 39.2° above the horizon.  This allows the antenna to drift scan the sky along an arc, as the Earth rotates, at Declination -7.5° (celestial latitude).

This scan was designed to pass across the triple star system 40 Eridani, at about 0200 local time. This was a joint SETI project with Skip Crilly to make simultaneous measurements together with the Green Bank Observatory 40 foot radio telescope in West Virginia. The two sites are at about the same latitude, at a distance of about 1300 miles.  Joint observations were scheduled for the early mornings of October 26, and October 29.

The specific target of interest was 40 Eridani A, which is at a distance of 16.4 light years.  Eridani A has a habitable zone around it for an orbit calculated to take 223.   The frequency spectrum of 1405 to 1445 MHz is continually sampled, in order to look for “triplets” signals.  Simultaneous observing from two distant sites would rule out that any signals detected at both sites cannot be from local terrestrial sources.

The technique of “Drift Scan” is just keeping the antenna pointed in one  fixed direction, while the sky passes overhead as the Earth turns. Rather than track a particular object, the sky is passively scanned, as the sky “drifts” across.

Also continuing:

  • Total power measurement @ 1428 MHz, beam size 2°
  • Neutral hydrogen spectral line measurement
Skip Crilly setting computers to record data for his SETI triplet study of 40 Eridani, at the DSES radio telescope site in Haswell. The project will simultaneously make the same measurements with the 40-foot radio telescope at the National Radio Astronomy Observatory in Greenbank, WV.
Skip’s antenna analyzer, in use.
The 60 foot antenna set to drift scan for 40 Eridani, as the sun set with a crescent moon.

Also on this trip, Gary Agranat WA2JQZ operated the ham station from the bunker, to participate in the annual Boy Scouts of America Jamboree On The Air (JOTA). Ops were on 20 meters, using the bunker’s 160 meter dipole. Two JOTA stations were contacted in California, W1AW/6 and N6B.  Other JOTA stations around the US and also Mexico were heard, but conversations among them were already well in progress, and so we didn’t interfere with those. Attempts were made to listen for the JOTA station in Colorado Springs, operated by Dave Molter AD0QD, but it was not heard.  In between JOTA ops, the club also participated in the New York State QSO Party, on CW and SSB, with 19 contacts.  And 9 contacts were made with JT65.  The longest distance JT65 contact was to Spain EC2ATM, and with SSB to 9A3XV in Croatia.

Skip Crilly used his antenna analyzer to check both the 160 and 80 meter dipoles located at the bunker.  He verified that most of the lower part of the 20 meter band was usable, and the 17 meter band was as well, but many of the other ham bands were not with the current length of the antenna.  Ed Corn KC0TBE later also used his antenna analyzer to check the antennas and feeds.  And he checked the amplifier.

Ed Corn also placed the two sump pumps on separate power inverter feeds.  That ensured that each pump can start independently if both are needed simultaneously.

Ed Corn KC0TBE using his antenna analyzer.
The bunker ham station set up.

Paul Berge, who was active several years ago, drove to the site from the Denver area. He discussed past and current projects with the team. Paul Berge, Steve Plock, and Skip Crilly stayed at Haswell overnight, to continue work the next day. Overnight the sky was clear, with the Milky Way clearly visible. The Orionid Meteor Shower was in progress, and several other members of the team stayed past sunset to watch the night sky as well.

Also working at the site on this trip were Rich Russel ACoUB and Ed Schade KC0HCR.

Photos from Plishner radio telescope site work trip October 7, 2017

Main efforts on this work trip were:

  1. Testing by Ed Johnson, Ray Uberecken, and Bill Miller, of the system II dish motor controller and software.
  2. Checking ability of the the 1.2 – 1.4 GHz feed to receive.
  3. Completion of Phase 1 of the bunker ramp retaining wall, by Ed Corn and Steve Plock. The wall is now 8 blocks high.

Also during the day, Gary Agranat represented DSES at the community fair in town, the Haswell Bazaar.

For more details, see the 2017-10-09 DSES Technical Planning Meeting Minutes.

AD5MQ, Ray Uberecken AA0L and Bill Miller KC0FHN testing the System 2 pointing system. They also listened for 1.296 GHz and 430 MHz beacons to test reception.

More work on the new retaining wall for the bunker ramp, by Ed Corn KC0TBE and Steve Plock KL7IZW.

The condition of the remainder of the south side of the bunker ramp.

Site generator building and propane tank.
After testing the antenna pointing system, the 60 foot dish antenna was again pointed a few degrees north to scan for Cygnus A and for galactic neutral hydrogen.

DSES SuperSID Radio Telescope — September 2017 Significant Solar Events Observed

DSES SuperSID Radio Telescope

September 2017 Significant Solar Events Observed

The DSES Sudden Ionospheric Disturbance Monitor (SID) detected in September several major solar eruptions – M and X Class Flares. Below are shown graphs of the data from four particular days.

The DSES SID instrument is located in Colorado Springs.  It works by listening for a US Navy beacon station in North Dakota, call sign NML,  transmitting on the Very Low Frequency (VLF) of 25 KHz.  During the day, the D Layer of the ionosphere forms at lower altitudes and attenuates the VLF signal.  But during solar flares, VLF signals can more easily pass through the D Layer, and they then get bounced back to the ground from the higher F Layer.  The more the solar flare activity affecting our ionosphere, the better the VLF signal from NML propagates to us.

Strong solar flare events show a characteristic spike, and then a “shark tail” as the ionosphere recovers.

At night, the D Layer dissipates, and then the signal from NML usually easily reaches the receiver.  At local sunrise, at about 1200 UTC, you can see the effect of the D Layer forming with the sudden drop in reception.

You can see evidence that the F Layer is influenced by the solar flares as well.  Notice during the X 8.2 Flare on September 10 that the incoming signal becomes even stronger than during normal propagation at night.

The bottom axis of each graph is Greenwich (UTC) Time.  The vertical axis shows the received energy.  Individual flare events are identified and annotated in green.  Some events occurred during local night.

Observations were made by Dr. Richard Russel.

September 4, 2017 – M Class Flares


September 6, 2017 – M Class Flares



September 7, 2017 – X 1.3 Class Flare


September 10, 2017 – X 8.2 Flare