Observations using the 60-foot Dish during the Open House, August 11, 2018

Editor’s note: During the DSES Open House on the weekend of August 11, 2018, three receiver systems were tested on the 60-foot dish antenna. Dr. Richard Russel reports on their successful results, and he shows what we see in our data plots. Some highlights to point out:

  1. The Spectracyber definitively observed the neutral hydrogen of the Milky Way as the beam width completely crossed the galactic plane.
  2. The RASDR4 observed a known neutral hydrogen radio source, which has a closer cloud along the line of sight that absorbs some of the hydrogen signal. The distinctive signal feature is known from published data by the Parkes Radio Observatory in Australia.
  3. The RASDR2 detected a 1296 MHz beacon set up at the home of a member about 80 miles away.  This is our first definitive detection of a beacon at 1296 MHz.

-Gary Agranat, website editor.


Open House Observations using the 60-foot Dish Antenna

The DSES and Society of Amateur Radio Astronomers (SARA) teams installed three different receivers onto the 60-foot dish during the open house.


Successful Installation and Testing of the DSES Spectracyber Neutral Hydrogen Receiver.

The Spectracyber was installed on the 60-foot dish during the DSES Open House on August 11, 2018.

The Spectracyber measures 1420.406 MHz +- 600 KHz. The observation was taken while passing the galactic plane at RA: 19hr 5 Min, Dec: 6 degrees 0 Min.

The observation shows a significant signal to noise ratio as seen below.

Follow-on observations will allow for measurement of the rotation rate of the Milky Way and Solar System!


RASDR4 Receiver Successful Observation of Hydrogen Absorption Line

Tony Bigbee used his RASDR4 on the 60-foot dish to observe this hydrogen absorption line at RA: 18.15hrs, Dec:-20 deg.

This target is a hydrogen source with a cloud of material between the source and Earth that absorbs the hydrogen energy resulting in a drop off of signal as shown below.

1296 MHz Beacon Observation using a RASDR2

Bogdan Vacaliuc installed a RASDR2 onto the 60-foot dish and was able to observe the 1296 MHZ beacon at Ray Uberecken’s house, about 80 statute miles distance to the west-northwest. This observation helped verify the azimuth pointing accuracy of the 60-foot dish.


DSES SuperSID Radio Telescope — September 2017 Significant Solar Events Observed

DSES SuperSID Radio Telescope

September 2017 Significant Solar Events Observed

The DSES Sudden Ionospheric Disturbance Monitor (SID) detected in September several major solar eruptions – M and X Class Flares. Below are shown graphs of the data from four particular days.

The DSES SID instrument is located in Colorado Springs.  It works by listening for a US Navy beacon station in North Dakota, call sign NML,  transmitting on the Very Low Frequency (VLF) of 25 KHz.  During the day, the D Layer of the ionosphere forms at lower altitudes and attenuates the VLF signal.  But during solar flares, VLF signals can more easily pass through the D Layer, and they then get bounced back to the ground from the higher F Layer.  The more the solar flare activity affecting our ionosphere, the better the VLF signal from NML propagates to us.

Strong solar flare events show a characteristic spike, and then a “shark tail” as the ionosphere recovers.

At night, the D Layer dissipates, and then the signal from NML usually easily reaches the receiver.  At local sunrise, at about 1200 UTC, you can see the effect of the D Layer forming with the sudden drop in reception.

You can see evidence that the F Layer is influenced by the solar flares as well.  Notice during the X 8.2 Flare on September 10 that the incoming signal becomes even stronger than during normal propagation at night.

The bottom axis of each graph is Greenwich (UTC) Time.  The vertical axis shows the received energy.  Individual flare events are identified and annotated in green.  Some events occurred during local night.

Observations were made by Dr. Richard Russel.

September 4, 2017 – M Class Flares


September 6, 2017 – M Class Flares



September 7, 2017 – X 1.3 Class Flare


September 10, 2017 – X 8.2 Flare

Deep Space Exploration Society (DSES) SuperSID station measures the August 20, 2017 Solar Eclipse!

Deep Space Exploration Society (DSES) SuperSID station measures the August 20, 2017 Solar Eclipse!

[ http://dses.science/wp-content/uploads/2017/07/Eclipse-SuperSID-Results.pdf ]

DSES President Dr. Richard Russel has been measuring signal strengths 0f stations in the Very Low Frequency (VLF) band for the past year, looking for changes in ionospheric propagation due to solar flares. He uses a Sudden Ionospheric Disturbance (SID) monitor small radio telescope.  His SID detector is located in Colorado Springs, CO. The measurements are sensitive to the changes in radio propagation at sunrise and sunset.

With his baseline of historical data at sunrise and sunset, he then predicted what could be expected during the August 20, 2017 solar eclipse. He presented his prediction work at the 2017 Society of Amateur Radio Astronomers Annual Conference at NRAO Greenbank, WV on July 25, 2017. His paper was titled, “Ionospheric Reflection Variation During Sunrise and Sunset and Predictions for the 2017 Total Eclipse”.

During the eclipse he made measurements, and found the results matched closely with his predictions. The link presents a summary of his work. Plus it has YouTube links to this and another of his talks at the SARA conference. The second talk is titled, The Use of Monte-Carlo Analysis to Evaluate Radio Astronomy Source Detection”.

Also see this Daily Mail article, NASA Scientists to Study the Ionosphere During the Eclipse (August 10, 2017).